429
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Production and purification of nattokinase from Bacillus subtilis

, , &
Pages 1-21 | Published online: 09 Jan 2022
 

ABSTRACT

The present study is focused on the production and purification of nattokinase, a fibrinolytic protease, from B. subtilis TH9 (NatTH9) based on an aqueous two-phase system (ATPS) technique. The results showed that the optimal ATPS for NatTH9 recovery was 20% (w/v) polyethylene glycol 6000 and 15% (w/v) potassium phosphate at pH 8. The partitioning coefficient, the partitioning yield, and the activity of NatTH9 were 6.25, 76.7%, and 547.02 U/mg, respectively. The purified NatTH9 demonstrated the ability to degrade fibrin and dissolve the clot. Fibrin zymography showed three clear zones on the gel with molecular weights of approximately 37, 27, and 21 kDa. The optimal pH and temperature of purified NatTH9 were 8 and 39°C, respectively.

Acknowledgments

We would like to thank Hue University for supporting facilities for this study.

Authors’ contribution

NHM: managed the literature searches, performed the experiments and analyzed the results, HTQT and TBV: performed the experiments, NHL: designed study, analyzed the results, and prepared the manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.