146
Views
5
CrossRef citations to date
0
Altmetric
Articles

Conformational free energy of alkylsilanes by nonequilibrium-pulling Monte Carlo simulation

Pages 693-701 | Received 26 Jun 2015, Accepted 04 Aug 2015, Published online: 07 Sep 2015
 

Abstract

The stationary phase in supercritical fluid chromatography includes alkylsilanes, bearing typically 18-carbon alkane chains, bonded to silica. The silanes are in contact with supercritical carbon dioxide. Interaction of the stationary phase with analytes from the mobile phase depends on conformation of the silanes, whether they form a collapsed layer between the silica and the carbon dioxide or are extended into the carbon dioxide. Although equilibrium conformation of alkylsilanes can be determined by equilibrium Monte Carlo (MC) simulation, that is hampered by slow relaxation of the chains. An alternative is to pull alkylsilanes from collapsed to extended conformations, then calculate free energy change from the Jarzynski equality. This work compares conformational results from equilibrium MC simulation to free energies from nonequilibrium pulling simulations. Because both equilibrium and nonequilibrium simulations are faster for shorter silanes, this work also compares results from 8-carbon and 18-carbon silanes. Free energies from nonequilibrium pulling predict that alkylsilanes tend to bend over and form a layer between silica and carbon dioxide. Results from equilibrium simulations are qualitatively consistent with results from nonequilibrium pulling. Longer-chain silanes have greater tendency to extend slightly into the carbon dioxide.

Acknowledgements

This work relied upon computing resources of the Minnesota Supercomputing Institute. Major computing support was supplied by the Open Science Grid consortium of the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by US National Science Foundation grant ACI-1053575.

Notes

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.