146
Views
5
CrossRef citations to date
0
Altmetric
Articles

Conformational free energy of alkylsilanes by nonequilibrium-pulling Monte Carlo simulation

Pages 693-701 | Received 26 Jun 2015, Accepted 04 Aug 2015, Published online: 07 Sep 2015

References

  • Tarafder A, Guiochon G. Use of isopycnic plots in designing operations of supercritical fluid chromatography: I. The critical role of density in determining the characteristics of the mobile phase in supercritical fluid chromatography. J. Chromatogr. A. 2011;1218:4569–4575.
  • Tarafder A, Guiochon G. Use of isopycnic plots in designing operations of supercritical fluid chromatography: II. The isopycnic plots and the selection of the operating pressure-temperature zone in supercritical fluid chromatography. J. Chromatogr. A. 2011;1218:4576–4585.
  • Guiochon G, Tarafder A. Fundamental challenges and opportunities for preparative supercritical fluid chromatography. J. Chromatogr. A. 2011;1218:1037–1114.
  • Lesellier E. Retention mechanisms in super/subcritical fluid chromatography on packed columns. J. Chromatogr. A. 2009;1216:1881–1890.
  • Poole CF. Stationary phases for packed-column supercritical fluid chromatography. J. Chromatogr. A. 2012;1250:157–171.
  • Strubinger JR, Parcher JF. Surface excess (Gibbs) adsorption isotherms of supercritical carbon dioxide on octadecyl-bonded silica stationary phases. Anal. Chem. 1989;61:951–955.
  • Strubinger JR, Song H, Parcher JF. High-pressure phase distribution isotherms for supercritical fluid chromatographic systems. 1. Pure carbon dioxide. Anal. Chem. 1991;63:98–103.
  • DiGiovanni O, Dorfler W, Mazzotti M, Morbidelli M. Adsorption of supercritical carbon dioxide on silica. Langmuir. 2001;17:4316–4321.
  • Rafferty JL, Siepmann JI, Schure MR. Understanding the retention mechanism in reversed-phase liquid chromatography: insights from molecular simulation. In Grushka E and Grinberg N, editors. Advances in chromatography. Vol. 48. Boca Raton: CRC Press; 2010. p. 1–55.
  • Jarzynski C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 1997; 78:2690–2693.
  • Crooks GE. Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E. 2000;61:2361–2366.
  • Dellago C, Hummer G. Computing equilibrium free energies using non-equilibrium molecular dynamics. Entropy. 2014;16:41–61.
  • Nicolini P, Frezzato D, Chelli R. Exploiting configurational freezing in nonequilibrium Monte Carlo simulations. J. Chem. Theory Comput. 2011;7:582–593.
  • Chelli R. Local sampling in steered Monte Carlo simulations decreases dissipation and enhances free energy estimates via nonequilibrium work theorems. J. Chem. Theory Comput. 2012;8:4040–4052.
  • Xu W, Peterson DL, Schroden JJ, Poe DP. Efficiency for unretained solutes in packed column supercritical fluid chromatography II. Experimental results for elution of methane using large pressure drops. J. Chromatogr. A. 2005;1078:162–170.
  • Poe DP, Schroden JJ. Effects of pressure drop, particle size and thermal conditions on retention and efficiency in supercritical fluid chromatography. J. Chromatogr. A. 2009;1216:7915–7926.
  • Regalado EL, Zhuang P, Chen Y, Makarov AA, Schafer WA, McGachy N, Welch CJ. Chromatographic resolution of closely related species in pharmaceutical chemistry: Dehalogenation impurities and mixtures of halogen isomers. Anal. Chem. 2014;86:805–813.
  • Lesellier E, West C. The many faces of packed column supercritical fluid chromatography - A critical review. J. Chromatogr. A. 2015;1382:2–46.
  • Chelli R, Gellini C, Pietraperzia G, Giovannelli E, Cardini G. Path-breaking schemes for nonequilibrium free energy calculations. J. Chem. Phys. 2013;138:214109/1–214109/11.
  • Ozer G, Keyes T, Quirk S, Hernandez R. Multiple branched adaptive steered molecular dynamics. J. Chem. Phys. 2014;141:064101/1–064101/8.
  • Taylor LT. Packed column supercritical fluid chromatography of hydrophilic analytes via water-rich modifiers. J. Chromatogr. A. 2012;1250:196–204.
  • Zhang L, Rafferty JL, Siepmann JI, Chen B, Schure MR. Chain conformation and solvent partitioning in reversed-phase liquid chromatography: Monte Carlo simulations for various water/methanol concentrations. J. Chromatogr. A. 2006;1126:219–231.
  • Rafferty JL, Siepmann JI, Schure MR. Mobile phase effects in reversed-phase liquid chromatography: a comparison of acetonitrile/water and methanol/water solvents as studied by molecular simulation. J. Chromatogr. A. 2011;1218:2203–2213.
  • Chen LY. Nonequilibrium fluctuation-dissipation theorem of Brownian dynamics. J. Chem. Phys. 2008;129:144113/1–144113/4.
  • Chen LY, Bastien DA, Espejel HE. Determination of equilibrium free energy from nonequilibrium work measurements. Phys. Chem. Chem. Phys. 2010;12:6579–6582.
  • Chen LY. Exploring the free-energy landscapes of biological systems with steered molecular dynamics. Phys. Chem. Chem. Phys. 2011;13:6176–6183.
  • Zhuravlev ND, Siepmann JI, Schure MR. Surface coverages of bonded-phase ligands on silica: a computational study. Anal. Chem. 2001;73:4006–4011.
  • Wyckoff RWG. The crystal structure of the high temperature form of cristobalite (SiO\textsubscript{2}). Am. J. Sci. 1925;9:448–459.
  • Rafferty JL, Siepmann JI, Schure MR. A molecular simulation study of the effects of stationary phase and solute chain length in reversed-phase liquid chromatography. J. Chromatogr. A. 2012;1223:24–34.
  • McGrother SC, Gubbins KE. Constant pressure Gibbs ensemble Monte Carlo simulations of adsorption in narrow pores. Mol. Phys. 1999;97:955–965.
  • Yang N, Yang X. Molecular simulation of swelling and structure for Na-Wyoming montmorillonite in supercritical CO\textsubscript{2}. Mol. Simul. 2011;37:1063–1070.
  • Zerbetto M, Piserchia A, Frezzato D. Looking for Some Free Energy? Call JEFREE (...). J. Comput. Chem. 2014;35:1865–1881.
  • Errington JR, Debenedetti PG, Torquato S. Quantification of order in the Lennard-Jones system. J. Chem. Phys. 2003;118:2256–2263.
  • Fennell CJ, Gezelter JD. Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. J. Chem. Phys. 2006;124:234104/1–234104/12.
  • Ahmed A, Sadus RJ. Effect of potential truncations and shifts on the solid-liquid phase coexistence of Lennard-Jones fluids. J. Chem. Phys. 2010;133:124515/1–124501/7.
  • Bakaev VA, Steele WA, Bakaeva TI, Pantano CG. Adsorption of CO\textsubscript{2} and Ar on glassy surfaces. Computer simulation and experimental study. J. Chem. Phys. 1999;111:9813–9821.
  • Demiralp E, Çağin T, Goddard WA III. Morse stretch potential charge equilibrium force field for ceramics: application to the quartz-stishovite phase transition and to silica glass. Phys. Rev. Lett. 1999;82:1708–1711.
  • Frischknecht AL, Curro JG. Improved united atom force field for poly(dimethylsiloxane). Macromolecules. 2003;36:2122–2129.
  • Qin Y, Yang X, Zhu Y, Ping J. Molecular dynamics simulation of interaction between supercritical CO\textsubscript{2} fluid and modified silica surfaces. J. Phys. Chem. C. 2008;112:12815–12824.
  • Kong CL. Combining rules for intermolecular potential parameters. II. Rules for the Lennard-Jones (12–6) potential and the Morse potential. J. Chem. Phys. 1973;59:2464–2467.
  • Potoff JJ, Errington JR, Panagiotopoulos AZ. Molecular simulation of phase equilibria for mixtures of polar and non-polar components. Mol. Phys. 1999;97:1073–1083.
  • Delhommelle J, Millié P. Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation. Mol. Phys. 2001;99:619–625.
  • Desgranges C, Delhommelle J. Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. III. Impact of combining rules on mixtures properties. J. Chem. Phys. 2014;140:104109/1–104109/13.
  • Lemmon E, McLinden M, Friend D. NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Available from http://webbook.nist.gov, 2013.
  • Harris JG, Yung KH. Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. J. Phys. Chem. 1995;99:12021–12024.
  • Marcos DH, Lindley DD, Wilson KS, Kay WB, Hershey HC. A (p, V, T) study of tetramethylsilane, hexamethyl disiloxane, octamethyltrisiloxane, and toluene from 423 to 573 K in the vapor phase. J. Chem. Thermodyn. 1983;15:1003–1014.
  • Raptis VE, Melissas VS. Force field development for poly(dimethylsilylenemethylene) with the aid of ab Initio calculations. J. Phys. Chem. B. 2006;110:14929–14938.
  • Makrodimitri ZA, Raptis VE, Economou IG. Molecular dynamics simulation of structure, thermodynamic, and dynamic properties of poly(dimethylsilamethylene), poly(dimethylsilatrimethylene) and their alternating copolymer. J. Phys. Chem. B. 2006;110:16047–16058.
  • Makrodimitri ZA, Unruh DJM, Economou IG. Molecular simulation of diffusion of hydrogen, carbon monoxide, and water in heavy n-alkanes. J. Phys. Chem. B. 2011;115:1429–1439.
  • Tuckerman M, Berne BJ, Martyna GJ. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 1992;97:1990–2001.
  • Forrest BM, Suter UW. Generalized coordinate hybrid Monte Carlo. Mol. Phys. 1994;82:393–410.
  • Lechner W, Oberhofer H, Dellago C, Geissler PL. Equilibrium free energies from fast-switching trajectories with large time steps. J. Chem. Phys. 2006;124:044113/1–044113/12.
  • Martin MG, Siepmann JI. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J. Phys. Chem. B. 1998;102:2569–2577.
  • Chen B, Potoff JJ, Siepmann JI. Monte Carlo calculations for alcohols and their mixtures with alkanes. Transferable potentials for phase equilibria. 5. United-atom description of primary, secondary and tertiary alcohols. J. Phys. Chem. B. 2001;105:3093–3104.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.