391
Views
29
CrossRef citations to date
0
Altmetric
Articles

Concepts and protocols for electrostatic free energies

&
Pages 1090-1101 | Received 06 Oct 2015, Accepted 14 Nov 2015, Published online: 05 Jul 2016
 

Abstract

Electrostatic free energies play an essential role in numerous biomolecular processes occurring in solution. Difficulties arise when the long-range Coulomb interaction is computed for idealised infinite simulation models with periodic boundary conditions. To maintain a neutral simulation box and a finite per-box energy, a neutralising charge density or ‘gellium’ is commonly used, leading to a mean box potential that is constrained to be rigorously equal to zero at all times. Thus, in considering quantities such as ion solvation free energy, the potential drop to move from solvent into the usual, gas phase reference state is missing. In fact, for an infinite molecular system, the electrostatic potential itself is not uniquely defined, but takes the form of an infinite series that is only conditionally convergent. This leads to several possible computational conventions that give different values for the potential and field, all mathematically valid. For experimentally measurable quantities, however, unique results are obtained when sufficiently large simulation boxes are utilised. These concepts are detailed, as well as a fundamental, linear response theoretical framework that provides qualitative understanding of the physical processes involved, especially dielectric relaxation of the environment in response to a new solute charge. Illustrative applications to ligand binding and biomolecular electron transfer are described.

Acknowledgements

We thank Nicolas Panel for doing the PDZ calculations.

Notes

No potential conflict of interest was reported by the authors.

1 There was a sign error in Equation (16) of Lin et al. [Citation56].

Additional information

Funding

This work was supported by [grant number MCB-1517221] from the National Science Foundation (B.R.).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.