391
Views
29
CrossRef citations to date
0
Altmetric
Articles

Concepts and protocols for electrostatic free energies

&
Pages 1090-1101 | Received 06 Oct 2015, Accepted 14 Nov 2015, Published online: 05 Jul 2016

References

  • Ulstrup J. Charge transfer processes in condensed media. Berlin: Springer; 1979.
  • Marcus R. Electron transfer reactions in chemistry: theory and experiment. In: Bendall D, editor. Protein electron transfer. BIOS Scientific Publishers: Oxford; 1996. p. 249–272.
  • Hünenberger P, Reif M. Single-ion solvation: experimental and theoretical approaches to elusive thermodynamic quantities. London: Royal Society of Chemistry; 2011.
  • Warshel A. Computer modelling of chemical reactions in enzymes and solutions. New York: Wiley; 1991.
  • Warshel A, Sharma P, Kato M, et al. Modeling electrostatic effects in proteins. Biochem. Biophys. Acta. 2006;1764:1647–1676.
  • Simonson T, Archontis G, Karplus M. Free energy simulations come of age: the protein-ligand recognition problem. Acc. Chem. Res. 2002;35:430–437.
  • Aqvist J, Hansson T. On the validity of electrostatic linear response in polar solvents. J. Phys. Chem. 1996;100:9512–9521.
  • Hummer G, Pratt L, Garcia A. Free energy of ionic hydration. J. Phys. Chem. 1996;100:1206–1215.
  • Jorgensen W, Chandrasekar J, Madura J, et al. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935.
  • Darden T, Pearlman D, Pedersen L. Ionic charging free energies: spherical vs. periodic boundary conditions. J. Chem. Phys. 1998;109:10921–10935.
  • Harder E, Roux B. On the origin of the electrostatic potential difference at a liquid--vacuum interface. J. Chem. Phys. 2008;129:234706.
  • Kathmann SM, Kuo I, Mundy CJ, et al. Understanding the surface potential of water. J. Phys. Chem. B. 2011;115:4369–4377.
  • Landau L, Lifschitz E. Electrodynamics of continuous media. New York (NY): Pergamon Press; 1980.
  • Fröhlich H. Theory of dielectrics. Oxford: Clarendon Press; 1949.
  • Roux B, Simonson T. Implicit solvent models. Biophys. Chem. 1999;78:1–20.
  • Kirkwood J, Westheimer F. The electrostatic influence of substituents on the dissociation constant of organic acids. J. Chem. Phys. 1938;6:506–512.
  • Miertus S, Scrocco E, Tomasi J. Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981;55:117–129.
  • Beglov D, Roux B. Finite representation of an infinite bulk system: solvent boundary potential for computer simulations. J. Chem. Phys. 1994;100:9050–9063.
  • Allen M, Tildesley D. Computer simulations of liquids. Oxford: Clarendon Press; 1991.
  • Born M, Huang K. Dynamical theory of crystal lattices. Oxford: Clarendon Press; 1954.
  • De Leeuw S, Perram J, Smith E. Simulation of electric systems in periodic boundary conditions. I. Lattice sums and dielectric constants. Proc. Roy. Soc. Lond. A. 1980;373:27–56.
  • De Leeuw S, Perram J, Smith E. Simulation of electric systems in periodic boundary conditions. II. Equivalence of boundary conditions. Proc. Roy. Soc Lond. A. 1980;373:57–66.
  • Nijboer BRA, Ruijgrok TW. On the energy per particle in three- and two-dimensional Wigner lattices. J. Stat. Phys. 1988;53:361–382.
  • Cichocki B, Felderhof BU, Hinsen K. Electrostatic interactions in periodic Coulomb and dipolar systems. Phys. Rev. A. 1989;39:5350–5358.
  • Figueirido FE, Levy R. On finite-size effects in computer simulations using the Ewald potential. J. Chem. Phys. 1995;103:6133–6142.
  • Bogusz S, Cheatham TE, Brooks BR. Removal of pressure and free energy artefacts in charged periodic systems via net charge corrections to the Ewald potential. J. Chem. Phys. 1998;108:7070–7084.
  • Darden T. Treatment of long-range forces and potential. In: Becker O, Mackerell A, Roux B, et al., editors. Computational biochemistry & biophysics. Chapter 4, New York: Marcel Dekker; 2001.
  • Cisneros GA, Karttunen M, Ren P, et al. Classical electrostatics for biomolecular simulations. Chem. Rev. 2013;114:779–814.
  • Barker J, Watts R. Monte Carlo studies of the dielectric proterties of water-like models. Mol. Phys. 1973;26:789–792.
  • van Gunsteren W, Berendsen H, Rullmann J. Inclusion of reaction fields in molecular dynamics: application to liquid water. Faraday Discuss Chem. Soc. 1979;66:58–70.
  • Figueirido FE, Del Buono GS, Levy R. On finite-size corrections to the free energy of hydration. J. Phys. Chem. B. 1997;101:5622–5623.
  • Hummer G, Pratt L, Garcia A. Ion sizes and finite-size corrections for ionic-solvation free energies. J. Chem. Phys. 1997;107:9275–9277.
  • Hunenberger P, McCammon J. Effect of artificial periodicity in simulations of biomolecules under Ewald boundary conditions: a continuum electrostatics study. Biophys. Chem. 1999;78:69–88.
  • Boresch S, Ringhofer S, Höchtl P, et al. Towards a better understanding of biomolecular solvation. Biophys. Chem. 1999;78:43–68.
  • Schwartz L. Méthodes mathématiques pour les sciences physiques. Paris: Hermann; 1961.
  • Nijboer BRA, de Wette FW. The internal field in dipole lattices. Physica. 1958;24:422–431.
  • Hummer G, Pratt L, Garcia A, et al. Electrostatic potentials and free energies of solvation of polar and charged molecules. J. Phys. Chem. B. 1997;101:3017–3020.
  • Ashbaugh HS, Wood RH. Effects of long-range electrostatic potential truncation on the free energy of ionic hydration. J. Chem. Phys. 1997;106:8135–8139.
  • Aqvist J, Hansson T. Analysis of electrostatic potential truncation schemes in polar solvents. J. Phys. Chem. 1998;102:3837–3840.
  • Hummer G, Pratt L, Garcia A, et al. Reply to comment on “electrostatic potentials and free energies of solvation of polar and charged molecules”. J. Phys. Chem. B. 1998;102:3841–3843.
  • Ashbaugh HS, Sakane S, Wood RH. Reply to comment on “electrostatic potentials and free energies of solvation of polar and charged molecules”. J. Phys. Chem. B. 1998;102:3844–3845.
  • Hill T. On intermolecular and intramolecular interactions between independent pairs of binding sites in proteins and other molecules. J. Am. Chem. Soc. 1956;78:5529.
  • Schaefer M, van Vlijmen HWT, Karplus M. Electrostatic contributions to molecular free energies in solution. Adv. Prot. Chem. 1998;51:1–57.
  • Baker NA, Sept D, Simpson J, et al. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 2001;98:10037–10041.
  • Simonson T. Electrostatics and dynamics of proteins. Rep. Prog. Phys. 2003;66:737–787.
  • Onufriev AV, Alexov E. Protonation and pKa changes in protein-ligand binding. Q. Rev. Biophys. 2013;46:181–209.
  • Roux B, Yu HA, Karplus M. Molecular basis for the Born model of solvation. J. Phys. Chem. 1990;94:4683–4688.
  • Netz RR, Orland H. Beyond Poisson--Boltzmann: Fluctuation effects and correlation functions. Eur. Phys. J.E. 2000;1:203–214.
  • Chandler D. Introduction to modern statistical mechanics. Oxford: Oxford University Press; 1987.
  • Hansen JP, McDonald I. Theory of simple liquids. New York: Academic Press; 1986.
  • Warshel A. Dynamics of reactions in polar solvents. Semiclassical trajectory studies of electron transfer and proton transfer studies. J. Phys. Chem. 1982;86:2218–2224.
  • Warshel A, Chu Z, Parson W. Dispersed polaron simulations of electron transfer in photosynthetic reaction centers. Science. 1989;246:112–116.
  • Aqvist J, Luzhkov VB, Brandsdal BO. Ligand binding affinities from MD simulations. Acc. Chem. Res. 2002;35:358–365.
  • Simonson T, Archontis G, Karplus M. A Poisson--Boltzmann study of charge insertion in an enzyme active site: the effect of dielectric relaxation. J. Phys. Chem. B. 1999;103:6142–6156.
  • Archontis G, Simonson T. Dielectric relaxation in an enzyme active site: molecular dynamics simulations intepreted with a macroscopic continuum model. J. Am. Chem. Soc. 2001;123:11047–11056.
  • Lin YL, Aleksandrov A, Simonson T, et al. Electrostatic free energy computations for solutions and proteins. J. Chem. Theory Comput. 2014;10:2690–2709.
  • Zwanzig F. High-temperature equation of state by a perturbation method. I. Non-polar gases. J. Chem. Phys. 1954;22:1420.
  • Archontis G, Karplus M. Cumulant expansion of the free energy: application to free energy derivatives and component analysis. J. Chem. Phys. 1996;105:11246–11260.
  • King G, Warshel A. Investigation of the free energy functions for electron transfer reactions. J. Chem. Phys. 1990;93:8682–8692.
  • Zheng L, Chen M, Yang W. Random walk in orthogonal space to achieve efficient free energy simulation of complex systems. Proc. Natl. Acad. Sci. USA 2008;105:20227–20232.
  • Wilson MA, Pohorille A, Pratt LR. Comment on “Study on the liquid-vapor interface of water. I. Simulation results of thermodynamic properties and orientational structure”. J. Chem. Phys. 1989;90:5211–5213.
  • Jorgensen W, Buckner K, Boudon S, et al. Efficient computation of absolute free energies of binding by computer simulations. Application to the methane dimer in water. J. Chem. Phys. 1988;89:3742–3746.
  • Deng Y, Roux B. Computations of standard binding free energies with molecular dynamics simulations. J. Phys. Chem. B. 2009;113:2234–2246.
  • Lynden-Bell RM, Rasaiah JC. J. Chem. Phys. 1997;107:1981.
  • Sakane S, Ashbaugh HS, Wood RH. Continuum corrections to the polarization and thermodynamic properties of Ewald sum simulations for ions and ion pairs at infinite dilution. J. Phys. Chem. B. 1998;102:5673–5682.
  • Allen TW, Andersen OS, Roux B. Energetics of ion conduction through the gramicidin channel. Proc. Natl. Acad. Sci. USA. 2004;101:117–122.
  • Allen TW, Andersen OS, Roux B. Ion permeation through a narrow channel: using gramicidin to ascertain all-atom potential of mean force methodology and biomolecular force fields. Biophys. J. 2006;90:3447–3468.
  • Rocklin GJ, Mobley DL, Dill KA, et al. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects. J. Chem. Phys. 2013;139:184103.
  • Ekimoto T, Matubayashi N, Ikeguchi M. Finite-size effect on the charging free energy of protein in explicit solvent. J. Chem. Theory Comput. 2014;11:215–223.
  • Onsager L. Electric moments of molecules in liquids. J. Am. Chem. Soc. 1936;58:1486.
  • Berendsen H, Postma J, van Gunsteren W, et al. Interaction models for water in relation to protein hydration. Pullman B, editor. Intermolecular forces. Dordrecht, Holland: Reidel; 1981.
  • Kumar M, Simonson T, Ohanessian G, et al. Structure and thermodynamics of Mg:phosphate interactions in water: A simulation study. ChemPhysChem. 2015;16:658–665.
  • Ponder JW, Wu CJ, Ren PY, et al. The current status of the AMOEBA polarizable force field. J. Phys. Chem. B. 2010;114:2549–2564.
  • Brooks B, Brooks CL III, Mackerell AD Jr., et al. CHARMM: the biomolecular simulation program. J. Comp. Chem. 2009;30:1545–1614.
  • Aleksandrov A, Simonson T. Molecular dynamics simulations show that conformational selection governs the binding preferences of imatinib for several tyrosine kinases. J. Biol. Chem. 2010;285:13807–13815.
  • Lin YL, Meng Y, Jiang W, et al. Explaining why Gleevec is a specific and potent inhibitor of Abl kinase. Proc. Natl. Acad. Sci. USA 2013;110:1664–1669.
  • Aksimentiev A, Schulten K. Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys. J. 2005;88:3745–3761.
  • Humphrey W, Dalke A, Schulten K. VMD -- visual molecular dynamics. J. Mol. Graph. 1996;14:33–38.
  • Im W, Beglov D, Roux B. Continuum solvation model: computation of electrostatic forces from numerical solutions to the Poisson--Boltzmann equation. Comput. Phys. Commun. 1998;111:59–75.
  • Shepherd TR, Hard RL, Murray AM, et al. Distinct ligand specificity of the Tiam1 and Tiam2 PDZ domains. Biochemistry. 2011;50:1296–1308.
  • Phillips JC, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005;26:1781–1802.
  • Muegge I, Qi P, Wand AJ, et al. Reorganization energy of cytochrome c revisited. J. Phys. Chem. B. 1997;101:825–836.
  • Tipmanee V, Oberhofer H, Park M, et al. Prediction of reorganization free energies for biological electron transfer: a comparative study of Ru-modified cytochromes and a 4-helix bundle protein. J. Am. Chem. Soc. 2010;132:17032–17040.
  • Bortolotti CA, Siwko ME, Castellini E, et al. The reorganization free energy in cytochrome c is controlled by the accessibility of the heme to solvent. J. Phys. Chem. Lett. 2011;2:1761–1765.
  • Cascella M, Magistrato A, Tavernelli I, et al. Role of protein frame and solvent for the redox properties of azurin from pseudomonas aeruginosa. Proc. National Acad. Sci. USA 2006;103:19641–19646.
  • Paltrinieri L, Borsari M, Ranieri A, et al. The active site loop modulates the reorganization energy of blue copper proteins by controlling the dynamic interplay with solvent. J. Phys. Chem. Lett. 2013;4:710–715.
  • Aleksandrov A, Schuldt L, Hinrichs W, et al. Tetracycline-Tet Repressor binding specificity: insights from experiments and simulations. Biophys. J. 2009;97:2829–2838.
  • Simonson T, Perahia D. Microscopic dielectric properties of cytochrome c from molecular dynamics simulations in aqueous solution. J. Am. Chem. Soc. 1995;117:7987–8000.
  • Simonson T, Carlsson J, Case DA. Proton binding to proteins: pKa calculations with explicit and implicit solvent models. J. Am. Chem. Soc. 2004;126:4167–4180.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.