543
Views
11
CrossRef citations to date
0
Altmetric
Energy Applications

Screening the activity of Lewis pairs for hydrogenation of CO2

, , &
Pages 821-827 | Received 21 Nov 2016, Accepted 06 Feb 2017, Published online: 09 Mar 2017
 

Abstract

CO2 capture coupled with CO2 conversion to hydrocarbon fuels could reduce the overall anthropogenic carbon footprint but requires an efficient catalytic pathway for CO2 hydrogenation. In this work, we examine functional groups that can be integrated within nanoporous materials, such as metal organic frameworks, that could lead to the development of materials that can selectively adsorb CO2 from flue gas and convert it into a useful fuel. We focus on the use of Lewis pair (LP) moieties as catalytic functional groups because of their activity for heterolytic dissociation of H2 and subsequent hydrogenation of CO2. However, most LP functional groups also strongly bind CO2, such that the catalytic site can be poisoned if the binding energy of CO2 is much stronger than that of H2. In this work, we screen a variety of LP moieties using density functional theory to compute the adsorption energies of H2 and CO2. We consider five classes of LP functional groups, with each class designed to explore modifying the binding energies in different ways. We have developed a mathematical model for predicting the H2 adsorption energies on various Lewis pairs as a function of geometric and energetic properties of the functional moieties.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.