543
Views
11
CrossRef citations to date
0
Altmetric
Energy Applications

Screening the activity of Lewis pairs for hydrogenation of CO2

, , &
Pages 821-827 | Received 21 Nov 2016, Accepted 06 Feb 2017, Published online: 09 Mar 2017

References

  • Huaman RNE, Xiu Jun T. Energy related CO2 emissions and the progress on CCS projects: a review. Renew Sust Energy Rev. 2014;31:368–85.
  • Benhelal E, Zahedi G, Shamsaei E, et al. Global strategies and potentials to curb CO2 emissions in cement industry. J Cleaner Prod. 2013;51:142–161.10.1016/j.jclepro.2012.10.049
  • Markewitz P, Kuckshinrichs W, Leitner W, et al. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ Sci. 2012;5:7281–305.10.1039/c2ee03403d
  • Li L, Zhao N, Wei W, et al. A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences. Fuel. 2013;108:112–130.10.1016/j.fuel.2011.08.022
  • Sumida K, Rogow DL, Mason JA, et al. Carbon dioxide capture in metal-organic frameworks. Chem Rev. 2012;112:724–781.10.1021/cr2003272
  • Li J-R, Kuppler RJ, Zhou H-C. Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev. 2009;38:1477–504.10.1039/b802426j
  • Bae YS, Snurr RQ. Development and evaluation of porous materials for carbon dioxide separation and capture. Angew Chem-Int Ed. 2011;50:11586–11596.10.1002/anie.201101891
  • Belmabkhout Y, Guillerm V, Eddaoudi M. Low concentration CO2 capture using physical adsorbents: are metal-organic frameworks becoming the new benchmark materials? Chem Eng J. 2016;296:386–397.10.1016/j.cej.2016.03.124
  • Ye J, Johnson JK. Design of Lewis pair-functionalized metal organic frameworks for CO2 hydrogenation. ACS Catal. 2015;5:2921–2928.10.1021/acscatal.5b00396
  • Ye J, Johnson JK. Screening lewis pair moieties for catalytic hydrogenation of CO2 in functionalized UiO-66. ACS Catal. 2015;5:6219–6229.10.1021/acscatal.5b01191
  • Ye J, Johnson JK. Catalytic hydrogenation of CO2 to methanol in a Lewis pair functionalized MOF. Catal Sci Technol. 2016;6:8392–8405.10.1039/C6CY01245K
  • Stephan DW. “Frustrated Lewis pairs”: a concept for new reactivity and catalysis. Organic Biomol Chem. 2008;6:1535–1539.10.1039/b802575b
  • Stephan DW, Erker G. Frustrated Lewis pairs: metal-free hydrogen activation and more. Angew Chem Int Ed. 2010;49:46–76.10.1002/anie.200903708
  • Ashley AE, O’Hare D. FLP-mediated activations and reductions of CO2 and CO. Top Curr Chem. 2013;334:191–217.
  • Zimmerman PM, Zhang Z, Musgrave CB. Simultaneous two-hydrogen transfer as a mechanism for efficient CO2 reduction. Inorg Chem. 2010;49:8724–8728.10.1021/ic100454z
  • Courtemanche M-A, Légaré M-A, Maron L, et al. Reducing CO2 to methanol using frustrated Lewis pairs: on the mechanism of phosphine–borane-mediated hydroboration of CO2. J Am Chem Soc. 2014;136:10708–10717.10.1021/ja5047846
  • Lim C-H, Holder AM, Hynes JT, et al. Roles of the Lewis acid and base in the chemical reduction of CO2 catalyzed by frustrated Lewis pairs. Inorg Chem. 2013;52:10062–10066.10.1021/ic4013729
  • Sgro MJ, Dömer J, Stephan DW. Stoichiometric CO2 reductions using a bis-borane-based frustrated Lewis pair. Chem Commun. 2012;48:7253–5.10.1039/c2cc33301e
  • Ménard G, Stephan DW. Room temperature reduction of CO2 to methanol by Al-based frustrated Lewis pairs and ammonia borane. J Am Chem Soc. 2010;132:1796–1797.10.1021/ja9104792
  • Mahdi T, Stephan DW. Enabling catalytic ketone hydrogenation by frustrated Lewis pairs. J Am Chem Soc. 2014;136:15809–15812.10.1021/ja508829x
  • Peuser I, Neu RC, Zhao X, et al. CO2 and formate complexes of phosphine/borane frustrated Lewis pairs. Chem Eur J. 2011;17:9640–9650.10.1002/chem.v17.35
  • Zhao L, Lu G, Huang F, et al. A computational experiment to study hydrogenations of various unsaturated compounds catalyzed by a rationally designed metal-free catalyst. Dalton Trans. 2012;41:4674–84.10.1039/c2dt12152b
  • Cohen SM. Postsynthetic methods for the functionalization of metal–organic frameworks. Chem Rev. 2012;112:970–1000.10.1021/cr200179u
  • Luan Y, Zheng NN, Qi Y, et al. Development of a SO3H-functionalized UiO-66 metal-organic framework by postsynthetic modification and studies of its catalytic activities. Eur J Inorg Chem. 2014;2014:4268-4272.
  • Kim M, Cohen SM. Discovery, development, and functionalization of Zr(IV)-based metal-organic frameworks. CrystEngComm. 2012;14:4096–4104.10.1039/C2CE06491J
  • Garibay SJ, Cohen SM. Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chem Commun. 2010;46:7700–7702.10.1039/c0cc02990d
  • Theuergarten E, Schlüns D, Grunenberg J, et al. Intramolecular heterolytic dihydrogen cleavage by a bifunctional frustrated pyrazolylborane Lewis pair. Chem Commun. 2010;46:8561–8563.10.1039/c0cc03474f
  • Theuergarten E, Schlösser J, Schlüns D, et al. Fixation of carbon dioxide and related small molecules by a bifunctional frustrated pyrazolylborane Lewis pair. Dalton Trans. 2012;41:9101–9110.10.1039/c2dt30448a
  • Cavka JH, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc. 2008;130:13850–13851.
  • Valenzano L, Civalleri B, Chavan S, et al. Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem Mater. 2011;23:1700–1718.10.1021/cm1022882
  • Peng G, Sibener SJ, Schatz GC, et al. CO2 hydrogenation to formic acid on Ni(110). Surf Sci. 2012;606:1050–1055.10.1016/j.susc.2012.02.027
  • Vesselli E, Rizzi M, De Rogatis L, et al. Hydrogen-assisted transformation of CO2 on nickel: the role of formate and carbon monoxide. J Phys Chem Lett. 2010;1:402–406.10.1021/jz900221c
  • Grabow LC, Mavrikakis M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal. 2011;1:365–384.10.1021/cs200055d
  • Zhao Y-F, Yang Y, Mims C, et al. Insight into methanol synthesis from CO2 hydrogenation on Cu(111): complex reaction network and the effects of H2O. J Catal. 2011;281:199–211.10.1016/j.jcat.2011.04.012
  • Ye J, Liu C-J, Mei D, et al. Methanol synthesis from CO2 hydrogenation over a Pd4/In2O3 model catalyst: a combined DFT and kinetic study. J Catal. 2014;317:44–53.
  • Ye J, Liu C, Ge Q. DFT study of CO2 adsorption and hydrogenation on the In2O3 surface. J Phys Chem C. 2012;116:7817–7825.10.1021/jp3004773
  • Kehr G, Schwendemann S, Erker G. Intramolecular frustrated Lewis pairs: formation and chemical features. In: Erker G, Stephan WD, editors. Frustrated Lewis pairs I: uncovering and understanding. Berlin: Springer; 2013. p. 45–83.
  • Stephan DW, Erker G. Frustrated Lewis pair chemistry: development and perspectives. Angew Chem Int Ed. 2015;54:6400–6441.10.1002/anie.201409800
  • Booth BL, Lawrence NJ, Rashid HS. Synthesis of chiral β-aminophosphine oxides via novel azaboretidinium bromide salts . J Chem Soc Perkin Trans. 1997;1:3509–3518.10.1039/a703936k
  • Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc. 2008;120:215–241.10.1007/s00214-007-0310-x
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09. Wallingford (CT): Gaussian, Inc.; 2009.
  • Schirmer B, Grimme S. Quantum chemistry of FLPs and their activation of small molecules: methodological aspects. Frustrated Lewis Pairs I. Berlin: Springer; 2013. p. 213–30.
  • Huang F, Jiang J, Wen M, et al. Assessing the performance of commonly used DFT functionals in studying the chemistry of frustrated Lewis pairs. J Theor Comput Chem. 2014;13:1350074.10.1142/S0219633613500740

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.