315
Views
2
CrossRef citations to date
0
Altmetric
Articles

Blending effect between n-decane and toluene in oxidation: a ReaxFF study

, , &
Pages 21-33 | Received 10 Jan 2017, Accepted 21 May 2017, Published online: 15 Jun 2017
 

Abstract

We studied dependency of toluene oxidation-blended n-decane on blending ratio and temperature using the reactive molecular dynamics (RMD) simulations with the newly developed reactive force field (ReaxFF). Different initial reaction pathways of toluene were observed between pure and blended toluene, while that of n-decane showed little contrast. The differences in toluene oxidation paths are related to radical pool, which is largely influenced by H/C ratio. We analysed the influence of H/C ratio on the consumption of intermediate species, and found different dependencies of HCHO consumption on H/C ratio for different temperatures. The difference is attributed to the large active energy difference between the two main HCHO consumption reactions by OH and O2. For the production part, the OH producing pathway was analysed carefully and shows H/C ratio influences OH production via H production and H abstract reactions. Our RMD simulations show that H/C ratio plays an important role in the oxidation of fuel.

Acknowledgements

The authors would like to thank Dr. Rui Qin for the help on this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.