315
Views
2
CrossRef citations to date
0
Altmetric
Articles

Blending effect between n-decane and toluene in oxidation: a ReaxFF study

, , &
Pages 21-33 | Received 10 Jan 2017, Accepted 21 May 2017, Published online: 15 Jun 2017

References

  • Dagaut P, Reuillon M, Boettner J, et al. Kerosene combustion at pressures up to 40 atm: experimental study and detailed chemical kinetic modeling. Symp (Int) Combust. 1994;25:919–926.10.1016/S0082-0784(06)80727-7
  • Violi A, Yan S, Eddings EG, et al. Experimental formulation and kinetic model for JP-8 surrogate mixtures. Combust Sci Technol. 2002;174:383–401.
  • Cooke JA, Bellucci M, Smooke MD, et al. Computational and experimental study of JP-8, a surrogate and its components in counterflow diffusion flames. Proc Combust Inst. 2005;30:439–446.10.1016/j.proci.2004.08.046
  • Wood CP, McDonell VG, Smith RA, et al. Development and application of a surrogate distillate fuel. J Propul Power. 1989;5:399–405.10.2514/3.23168
  • Gueret C, Cathonnet M, Boettner JC, et al. Experimental study and modeling of kerosene oxidation in a jet-stirred flow reactor. Proc Combust Inst. 1990;23:211–218.
  • Colket M, Edwards T, Williams S, et al. Development of an experimental database and kinetic models for surrogate jet fuels. AIAA 2007-770, 45th Aerospace Sciences Meeting and Exhibit; Jan 8–11; Reno, NV; 2007.
  • Dooley S, Won SH, Chaos M, et al. A jet fuel surrogate formulated by real fuel properties. Combust Flame. 2010;157:2333–2339.10.1016/j.combustflame.2010.07.001
  • Vovelle C, Delfau JL, Reuillon M. Formation of aromatic hydrocarbons in decane and kerosene flames at reduced pressure. In: Bockhorn H, editor. Soot formation in combustion mechanisms and models. Springer Berlin Heidelberg; 1994. p. 50–65.10.1007/978-3-642-85167-4
  • K Brezinsky, F Dryer, Y Ju, et al. Website for ‘Generation of comprehensive surrogate kinetic models and validation databases for simulating large molecular weight hydrocarbon fuels’. 2007. Available from: http://www.princeton.edu/~combust/MURI/.
  • Heck RH. Contribution of normal paraffins to the octane pool. Energy Fuels. 1989;3:109–111.10.1021/ef00013a020
  • Ciajolo A, D’Anna A, Mercogijano R. Slow-combustion of n-heptane, iso-octane and a toluene/n-heptane mixture. Combust Sci Technol. 1993;90:357–371.10.1080/00102209308907622
  • Vanhove G, Petit G, Minetti R. Experimental study of the kinetic interactions in the low-temperature autoignition of hydrocarbon binary mixtures and a surrogate fuel. Combust Flame. 2006;145:521–532.10.1016/j.combustflame.2006.01.001
  • Zeppieri S, Brezinsky K, Glassman I. Pyrolysis studies of methylcyclohexane and oxidation studies of methylcyclohexane and methylcyclohexane/toluene blends. Combust Flame. 1997;108:266–286.10.1016/S0010-2180(96)00125-3
  • Klotz SD. Interactive oxidation chemistry of aromatic and C4 hydrocarbon fuel components [PhD thesis]. Princeton (NJ): Department of Mechanical and Aerospace Engineering, Princeton University; 1998.
  • Herzler J, Fikri M, Hitzbleck K, et al. Shock-tube study of the autoignition of n-heptane/toluene/air mixtures at intermediate temperatures and high pressures. Combust Flame. 2007;149:25–31.10.1016/j.combustflame.2006.12.015
  • Carbone F, Gomez A. Chemical interactions between 1,2,4-trimethylbenzene and n-decane in doped counterflow gaseous diffusion flames. Proc Combust Inst. 2015;35:761–769.10.1016/j.proci.2014.05.134
  • Fossi A, DeChamplain A, Akih-Kumgeh B. Unsteady RANS and scale adaptive simulations of a turbulent spray flame in a swirled-stabilized gas turbine model combustor using tabulated chemistry. Int J Numer Methods Heat Fluid Flow. 2015;25:1064–1088.10.1108/HFF-09-2014-0272
  • Elsinawi AH. Modeling study of impact of water on CO, PAH and NOx emissions from combustion of surrogate fuel [PhD thesis]. Dayton (OH): School of Engineering, University of Dayton; 2007.
  • Munzar JD, Akih-Kumgeh B, Denman BM, et al. An experimental and reduced modeling study of the laminar flame speed of jet fuel surrogate components. Fuel. 2013;113:586–597.10.1016/j.fuel.2013.05.105
  • Liu YC, Walker B. Functional group analysis of evaporation and liquid combustion of Jet-A and its surrogate fuel based on quantitative FT-IR measurements. AIAA 2016-0689, 54th AIAA Aerospace Sciences Meeting 2016; Jan 4–8; San Diego (CA); 2016.
  • Won SH, Sun W, Ju Y. Kinetic effects of toluene blending on the extinction limit of n-decane diffusion flames. Combust Flame. 2010;157:411–420.10.1016/j.combustflame.2009.11.016
  • Dai P, Chen Z, Chen S. Numerical study on the ignition process of n-decane/toluene binary fuel blends. Energy Fuels. 2012;26:6729–6736.
  • The CP2K developers group. CP2K. 2017. Available from: https://www.cp2k.org/
  • van Duin ACT, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A. 2001;105:9396–9409.10.1021/jp004368u
  • Zaminpayma E. Molecular dynamics simulations of mechanical properties and interaction energy of polythiophene/polyethylene/poly(p-phenylenevinylene) and CNTs composites. Polym Compos. 2014;35:2261–2268.10.1002/pc.v35.11
  • Liu XL, Li XX, Liu J, et al. Study of high density polyethylene (HDPE) pyrolysis with reactive molecular dynamics. Polym Degrad Stabil. 2014;104:60–70.
  • Strachan A, van Duin ACT, Chakraborty D, et al. Shock waves in high-energy materials: the initial chemical events in nitramine RDX. Phys Rev Lett. 2003;91:098301.10.1103/PhysRevLett.91.098301
  • Strachan A, Kober EM, van Duin ACT, et al. Thermal decomposition of RDX from reactive molecular dynamics. J Chem Phys. 2005;122:54502–54510.10.1063/1.1831277
  • van Duin ACT, Zeiri Y, Dubnikova F, et al. Atomistic-scale simulations of the initial chemical events in the thermal initiation of triacetonetriperoxide. J Am Chem Soc. 2005;127:11053–11062.10.1021/ja052067y
  • Salmon E, van Duin ACT, Lorant F, et al. Thermal decomposition process in algaenan of Botryococcus braunii race L. Part 2: molecular dynamics simulations using the ReaxFF reactive force field. Org Geochem. 2009;40:416–427.10.1016/j.orggeochem.2008.08.012
  • Chen B, Wei XY, Yang ZS, et al. ReaxFF reactive force field for molecular dynamics simulations of lignite depolymerization in supercritical methanol with lignite-related model compounds. Energy Fuels. 2012;26:984–989.10.1021/ef201234j
  • Ding JX, Zhang L, Zhang Y, et al. A reactive molecular dynamics study of n-heptane pyrolysis at high temperature. J Phys Chem A. 2013;117:3266–3278.10.1021/jp311498u
  • Wang QD, Wang JB, Li JQ, et al. Reactive molecular dynamics simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane. Combust Flame. 2011;158:217–226.10.1016/j.combustflame.2010.08.010
  • Cheng XM, Wang QD, Li JQ, et al. ReaxFF molecular dynamics simulations of oxidation of toluene at high temperatures. J Phys Chem A. 2012;116:9811–9818.10.1021/jp304040q
  • Zhang YM, Li JL, Wang XY, et al. Research on pyrolysis of toluene under microwave heating by using ReaxFF molecular dynamics simulations. Mol Phys. 2014;112:1724–1730.10.1080/00268976.2013.860245
  • Chenoweth K, van Duin ACT, Dasgupta S, et al. Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel. J Phys Chem A. 2009;113:1740–1746.10.1021/jp8081479
  • van Duin ACT, Goddard WA, Yakovlev AL. ReaxFF 2013, SCM, theoretical chemistry. Amsterdam: Vrije Universiteit; 2013. Available from: http://www.scm.com
  • Chenoweth K, van Duin ACT, Goddard WA. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys Chem A. 2008;112:1040–1053.10.1021/jp709896w
  • Berendsen HJC, Postma JPM, van Gunsteren WF, et al. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–3690.10.1063/1.448118
  • Mortimer RG. Physical chemistry. London: Academic Press; 2008.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 03, revision B.05. Wallingford (CT): Gaussian Inc.; 2004.
  • Westbrook CK, Pitz WJ, Herbinet O, et al. A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane. Combust Flame. 2009;156:181–199.10.1016/j.combustflame.2008.07.014
  • Herbinet O, Husson B, Ferrari M, et al. Low temperature oxidation of benzene and toluene in mixture with n-decane. Proc Combust Inst. 2013;34:297–305.10.1016/j.proci.2012.06.005
  • Sivaramakrishnan R, Tranter RS, Brezinsky K. High-pressure, high-temperature oxidation of toluene. Combust Flame. 2004;139:340–350.10.1016/j.combustflame.2004.09.006
  • Yuan W, Li Y, Dagaut P, et al. Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. II. A comprehensive kinetic modeling study. Combust Flame. 2015;162:22–40.10.1016/j.combustflame.2014.07.011
  • Najm HN, Paul PH, Mueller CJ, et al. On the adequacy of certain experimental observables as measurements of flame burning rate. Combust Flame. 1998;113:312–332.10.1016/S0010-2180(97)00209-5
  • Smith GP, Golden DM, Frenklach M, et al. GRI_MECH 3.0. 2000. Available from: http://www.me.berkeley.edu/gri_mech/
  • Battin-Leclerc F. Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates. Prog Energy Combust Sci. 2008;34:440–498.10.1016/j.pecs.2007.10.002
  • Deepti S, Takayuki N, Saad T, et al. An experimental and kinetic study of syngas/air combustion at elevated temperatures and the effect of water addition. Fuel. 2012;94:448–456.
  • Ashraf C, van Duin ACT. Extension of the ReaxFF combustion force field toward syngas combustion and initial oxidation kinetics. J Phys Chem A. 2017;121:1051–1068.10.1021/acs.jpca.6b12429

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.