72
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Optimization on conditions of podophyllotoxin-loaded liposomes using response surface methodology and its activity on PC3 cells

ORCID Icon, , , , , , , , & show all
Pages 133-141 | Received 20 Apr 2018, Accepted 14 Jul 2018, Published online: 04 Apr 2019
 

Abstract

The purpose of this study was to optimize the preparation conditions of podophyllotoxin liposomes (PPT-Lips), and to investigate their effects on PC3 cells. PPT-Lips were prepared by using a thin-film dispersion method. In order to achieve maximum drug encapsulation efficiency (EE), the process and formulation variables were optimized by response surface methodology (RSM). The optimum preparation conditions were cholesterol to lecithin ratio of 3.6:40 (w/w), lipid to drug ratio of 15.8:1 (w/w), and the ultrasonic intensity of 35% (total power of 400 W). The experimental EE of PPT-Lips was 90.425%, which was consistent with the theoretically predicted value. The characterization studies showed that PPT-Lips were well-dispersible spherical particles with an average size of 106 nm and a zeta potential of –10.1 mV. A gradual and time-dependent pattern of PPT from liposomes was found in in vitro drug release with a cumulative release amount up to 70.3% in 24 h. Results of cell viability experiments on PC3 cells demonstrated that PPT-Lips exhibited more effective anticancer activity in comparison with free PPT. Therefore, PPT-Lips represent an efficient and promising drug delivery system for PPT.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This research was financially supported by the Key Project of Science and Technology Research and Development of Anhui Province [No. 1704a07020094], Opening Foundation of Collaborative Innovation Center of Modern Bio-manufacture, Anhui University [No. BM2015003], and the Anhui Provincial Natural Science Foundation [No. 1808085MC77].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,410.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.