196
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Design, formulation and optimization of topical ethosomes using full factorial design: in-vitro and ex-vivo characterization

ORCID Icon
Pages 74-82 | Received 13 Apr 2021, Accepted 05 Jul 2021, Published online: 26 Oct 2021
 

Abstract

The present study aimed to develop lomefloxacin-loaded ethosomal vesicles intended to be applied topically for treating skin infections. Ethosomes were prepared using the cold method. The formulation variables were optimized using 22 factorial design and Design Expert® software for analyzing the data statistically and graphically using response surface plots. Phosphatidylcholine (X1) and ethanol (X2) were chosen as the independent variables, while the dependent variables comprised entrapment efficiency (Y1), vesicles size (Y2) and zeta potential (Y3). The optimized ethosomes were subsequently incorporated into Carbopol® 940 gel and characterized for rheological behaviour, in-vitro release, ex-vivo skin permeation and deposition. The ex-vivo permeation and skin deposition studies showed better results compared to drug solutions. In a nutshell, the ethosomal vesicles were found to be a promising carrier demonstrating enhanced topical delivery of lomefloxacin.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,410.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.