458
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Optimally controlled morphology and physico-mechanical properties of inclusion complex loaded electrospun polyvinyl alcohol based nanofibrous mats for therapeutic applications

&
Pages 1182-1202 | Received 11 Feb 2021, Accepted 24 Mar 2021, Published online: 14 Apr 2021
 

Abstract

Hydrophilic polyvinyl alcohol (PVA) based electrospun nanofibrous mats (ENMs) are recently being used for the designing and fabrication of active wound dressing materials. Thus, in this study an inclusion complex (IC) of curcumin (CUR) and β-cyclodextrin (β-CD) was optimally incorporated in electrospun PVA nanofibers, to obtain uniform bead-free nanofibers with minimum average diameter and variation using Taguchi’s design of experiments (DOE). The optimum level parameters were ascertained using Taguchi’s methodology, to obtain IC loaded PVA based bead-free ENMs, by varying IC (∼20, ∼40, and ∼60 wt.%) loading, applied voltage, solution concentration, and N, N-dimethylformamide (DMF) content in the electrospinning solution mixture. Validation experiments revealed a good agreement between the predicted and experimental values of fiber diameter, diameter-variation, and bead-numbers. Analysis of variance (ANOVA) showed a major influence of IC loading on the average fiber diameter and the number of bead defects, for IC-loaded PVA based ENMs. However, the DMF content of the solvent mixture significantly influenced the diameter variations of ENMs. The surface morphologies of ENMs were analyzed using Scanning Electron Microscopy (SEM) whereas the microstructural aspects were studied by Wide-Angle X-ray Diffraction (WAXD) and Fourier transform infrared (FT-IR) spectroscopy. The thermal properties were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) whereas the mechanical properties were measured by using uniaxial tensile testing and dynamic mechanical analysis (DMA). The variation in properties of IC loaded PVA based ENMs were correlated with neat PVA based ENMs fabricated using a similar set of optimized electrospinning process parameters. The study conceptually demonstrated the optimal designing of structurally-engineered hydrophilic IC loaded PVA based ENMs by using the Taguchi approach based on orthogonal DOE as potential drug release substrates.

Acknowledgment

We are also grateful for the research facilities were provided by CRF (Central Research facility) and NRF (Nanoscale Research Facility), IIT Delhi.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The current research was supported by the research grant provided by the Indian Council of Medical Research (ICMR), New Delhi, vide research grant: No. 5/3/8/3/2019-ITR) and financial support from MHRD (Ministry of Human Resource and Development), India.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.