319
Views
3
CrossRef citations to date
0
Altmetric
Articles

Fabrication and in vitro characterization of luffa-based composite scaffolds incorporated with gelatin, hydroxyapatite and psyllium husk for bone tissue engineering

, , , , & ORCID Icon
Pages 2220-2248 | Received 28 Nov 2021, Accepted 11 Jul 2022, Published online: 22 Jul 2022
 

Abstract

Bone tissue engineering is an emerging technology that has been developed in recent years to address bone abnormalities by repairing, regenerating and replacing damaged/injured tissues. In present work, we report the fabrication and characterization of porous luffa-based composite scaffolds composed of Luffa cylindrica (sponge gourd) powder (LC)/hydroxyapatite (HA), psyllium husk (PH) and gelatin (G) in various combinations (w/v) i.e. 3% LC, 5% LC and control (C) (without luffa powder) by using freeze-drying method. The structural stability of the scaffolds was obtained after chemically crosslinking them with glutaraldehyde (GTA), which was identified via scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The hydrophilic behavior of the samples was quantified by water contact angle measurements. The average pore size of the scaffolds was observed in a range of 20–240 µm. As per the obtained data, the apparent and effective porosities were estimated as ∼57.08 ± 4.38%, ∼50.58 ± 4.09%, ∼59.45 ± 1.60% and 51.37 ± 3.36%, 47.94 ± 4.57% and 53.09 ± 5.45% for 3% LC, 5% LC and control (C) scaffolds, respectively. The scaffolds were found to be noticeably stable for 50 days at 37 °C in a lysozyme solution. The liquid retention capacity of the scaffolds revealed that the luffa-based scaffolds gained lower retention capacity compared to the control (C) scaffold; indicating an increase in scaffold stiffness due to the addition of luffa. Compressive strength study demonstrated that the mechanical stability of the fabricated luffa-based scaffolds got increased significantly from ∼1.5 to ∼9.5 MPa, which is comparable to that of trabecular bone. In addition, proliferation and viability analysis of MG-63 osteoblast-like cells revealed a significant level of cellular compatibility i.e. approaching ∼64% proliferation by 6th day in vitro compared to control. Thus, the obtained results demonstrate that the fabricated novel luffa-based scaffolds exhibit good cytocompatibility, remarkable porosity and excellent mechanical strength comparable to native human bone. Therefore, we anticipate that the developed luffa-based scaffolds could be a promising candidate for bone tissue engineering applications.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Acknowledgments

The authors would also like to thank the Ministry of Human Resource Development (MHRD), the Government of India, Quality Improvement Programme (QIP) and Central Instrument Facility, Indian Institute of Technology (Banaras Hindu University) for providing access to the scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) facility.

Additional information

Funding

This work was funded by Core Research Grant (CRG)-Scheme of Science and Engineering Research Board (SERB)-2020, Grant Number- CRG/2020/000235.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.