319
Views
3
CrossRef citations to date
0
Altmetric
Articles

Fabrication and in vitro characterization of luffa-based composite scaffolds incorporated with gelatin, hydroxyapatite and psyllium husk for bone tissue engineering

, , , , & ORCID Icon
Pages 2220-2248 | Received 28 Nov 2021, Accepted 11 Jul 2022, Published online: 22 Jul 2022

References

  • Echave MC, Pimenta-Lopes C, Pedraz JL, et al. Enzymatic crosslinked gelatin 3D scaffolds for bone tissue engineering. Int J Pharm. 2019;562:151–161.
  • Haaparanta A-M, Uppstu P, Hannula M, et al. Improved dimensional stability with bioactive glass fibre skeleton in poly(lactide-co-glycolide) porous scaffolds for tissue engineering. Mater Sci Eng C Mater Biol Appl. 2015;56:457–466.
  • Tanobe V, Flores-Sahagun T, Amico S, et al. Sponge gourd (Luffa cylindrica) reinforced polyester composites: preparation and properties. Def Sci J. 2014;64(3):273–280.
  • Daniel P, Yadav KS. Developing the insulation sheet of Luffa cylindrica for mitticool fridge. Int J Sci Res Manag. 2016;4(8):4514–4524.
  • Mary Stella S, Vijayalakshmi U. Influence of chemically modified Luffa on the preparation of nanofiber and its biological evaluation for biomedical applications. J Biomed Mater Res A. 2019;107(3):610–620.
  • Mohanta N, Acharya SK. Investigation of mechanical properties of Luffa cylindrica fibre reinforced epoxy hybrid composite. Int J Eng Sci Technol. 1970;7(1):1–10.
  • Parida C, Dash SK, Das SC. Effect of fiber treatment and fiber loading on mechanical properties of Luffa-resorcinol composites. Indian J Mater Sci. 2015;2015:658064.
  • Gupta D, Joshi A, Malviya S, et al. Anti-anaemic activity of hydro-alcoholic leaf extract of Luffa aegyptiaca in phenylhydrazine induced anemic rats. J Drug Deliv Ther. 2017;7:200–201.
  • Alhijazi M, Safaei B, Zeeshan Q, et al. Recent developments in luffa natural fiber composites. Sustainability. 2020;12(18):7683.
  • Chen Y, Su N, Zhang K, et al. In-depth analysis of the structure and properties of two varieties of natural luffa sponge fibers. Materials. 2017;10(5):479.
  • Siqueira G, Bras J, Follain N, et al. Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohydr Polym. 2013;91(2):711–717.
  • Patel VK, Dhanola A. Influence of CaCO3, Al2O3, and TiO2 microfillers on physico-mechanical properties of Luffa cylindrica/polyester composites. Eng Sci Technol Int J. 2016;19:676–683.
  • Özer İE, Albayrak AZ, Güneş OÇ, et a.. Production of Luffa cylindrica reinforced silk fibroin/chitosan hydrogel scaffolds for cartilage tissue defects. 19th International Metallurgy & Materials Congress (IMMC 2018) p. 765–768.
  • Cecen B, Kozaci LD, Yuksel M, et al. Biocompatibility and biomechanical characteristics of loofah based scaffolds combined with hydroxyapatite, cellulose, poly-l-lactic acid with chondrocyte-like cells. Mater Sci Eng C. 2016;69:437–446.
  • Fadli A, Widiyanti P, Noviana D, et al. Preparation of hydroxyapatite scaffold using Luffa cylindrica sponge as template. J Rekayasa Kim Lingkung. 2020;15(2):62–70.
  • Alshaaer M, Kailani MH, Ababneh N, et al. Fabrication of porous bioceramics for bone tissue applications using luffa cylindrical fibres (LCF) as template. Process Appl Ceram. 2017;11(1):13–20.
  • Nookuar S, Kaewsichan L, Kaewsrichan J. Physical characterization of bone scaffolds prepared from ceramic core coated with ceramic-polycaprolactone mixture. TIChE International Conference 2011, Paper 3578, p. 1–4, 2011.
  • Vasconcelos HC, Barreto MC. Tailoring the microstructure of sol–gel derived hydroxyapatite/zirconia nanocrystalline composites. Nanoscale Res Lett. 2011;6(1):1–5.
  • Chen J-P, Lin T-C. Loofa sponge as a scaffold for culture of rat hepatocytes. Biotechnol Prog. 2005;21(1):315–319.
  • Mahdavi R, Belgheisi G, Haghbin-Nazarpak M, et al. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study. J Mater Sci Mater Med. 2020;31(11):97.
  • Nikkhah M, Akbari M, Paul A, et al. Gelatin-based biomaterials for tissue engineering and stem cell bioengineering. In Neves NM & Reis RL, editors. Biomaterials from nature for advanced devices and therapies. New York: John Wiley & Sons; 2016. p. 37–62.
  • Dong Z, Yuan Q, Huang K, et al. Gelatin methacryloyl (GelMA)-based biomaterials for bone regeneration. RSC Adv. 2019;9(31):17737–17744.
  • Liu X, Smith LA, Hu J, et al. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials. 2009;30(12):2252–2258.
  • Maji K, Dasgupta S. Bioactive glass and biopolymer based composite scaffold for bone regeneration. Trans Indian Ceram Soc. 2015;74(4):195–201.
  • Golkar P, Kalani S, Allafchian A, et al. Fabrication and characterization of electrospun plantago major seed mucilage/PVA nanofibers. J Appl Polym Sci. 2019;136(32):47852.
  • Poddar S, Sunil A, Sahi A, et al. Fabrication and cytocompatibility evaluation of psyllium husk (isabgol)/gelatin composite scaffolds. Appl Biochem Biotechnol. 2019;188(3):750–719.
  • Agarwal PS, Poddar S, Varshney N, et al. Printability assessment of psyllium husk (isabgol)/gelatin blends using rheological and mechanical properties. J Biomater Appl. 2021;35(9):1132–1142.
  • Poddar S, Agarwal PS, Sahi AK, et al. Fabrication and characterization of electrospun psyllium husk-based nanofibers for tissue regeneration. J Appl Polym Sci. 2021;138(24):50569.
  • Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011;7(7):2769–2781.
  • Du M, Chen J, Liu K, et al. Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair. Compos Part B Eng. 2021;215:108790.
  • Shao W, He J, Sang F, et al. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite–tussah silk fibroin nanoparticles for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2016;58:342–351.
  • Lian H, Zhang L, Meng Z. Biomimetic hydroxyapatite/gelatin composites for bone tissue regeneration: fabrication, characterization, and osteogenic differentiation in vitro. Mater Des. 2018;156:381–388.
  • Chen P, Liu L, Pan J, et al. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019;97:325–335.
  • Purohit SD, Singh H, Bhaskar R, et al. Fabrication of graphene oxide and nanohydroxyapatite reinforced gelatin–alginate nanocomposite scaffold for bone tissue regeneration. Front Mater. 2020;7:250.
  • Kim H, Hwangbo H, Koo Y, et al. Fabrication of mechanically reinforced gelatin/hydroxyapatite bio-composite scaffolds by core/shell nozzle printing for bone tissue engineering. Int J Mol Sci. 2020;21(9):3401.
  • Brougham C, Levingstone T, Shen N, et al. Freeze‐drying as a novel biofabrication method for achieving a controlled microarchitecture within large, complex natural biomaterial scaffolds. Adv Healthc Mater. 2017;6:1700598.
  • Alp D, Bulantekin Ö. The microbiological quality of various foods dried by applying different drying methods: a review. Eur Food Res Technol. 2021;247(6):1333–1343.
  • Luque García JL, Luque de Castro MD. Acceleration and automation of solid sample treatment. Vol. 24, 1st ed.; Amsterdam, Netherlands: Elsevier, 2002.
  • Ren D, Yi H, Zhang H, et al. A preliminary study on fabrication of nanoscale fibrous chitosan membranes in situ by biospecific degradation. J Membr Sci. 2006;280(1-2):99–107.
  • Oliver W, Wells J. Lysozyme as an alternative to growth promoting antibiotics in swine production. J Anim Sci Biotechnol. 2015;6(1):35.
  • Mour M, Das D, Winkler T, et al. Advances in porous biomaterials for dental and orthopaedic applications. Materials. 2010;3(5):2947–2974.
  • Wang C, Xu D, Li S, et al. Effect of pore size on the physicochemical properties and osteogenesis of Ti6Al4V porous scaffolds with bionic structure. ACS Omega. 2020;5(44):28684–28692.
  • Zhang C, Zhou W, Wang Q, et al. Comparison of static contact angle of various metal foams and porous copper fiber sintered sheet. Appl Surf Sci. 2013;276:377–382.
  • Das NC. Phase behaviour and separation kinetics of polymer blends. J Microsc. 2014;253(3):198–203.
  • Donate R, Monzón M, Alemán-Domínguez ME, et al. Enzymatic degradation study of PLA-based composite scaffolds. Rev Adv Mater Sci. 2020;59(1):170–175.
  • Nazir R, Bruyneel A, Carr C, et al. Mechanical and degradation properties of hybrid scaffolds for tissue engineered heart valve (TEHV). J Funct Biomater. 2021;12(1):20.
  • Sharma A, Molla MS, Katti KS, et al. Multiscale models of degradation and healing of bone tissue engineering nanocomposite scaffolds. J Nanomech Micromech. 2017;7:04017015.
  • Dimitriou R, Jones E, McGonagle D, et al. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66.
  • Ahmad Khalili A, Ahmad MR. A review of cell adhesion studies for biomedical and biological applications. Int J Mol Sci. 2015;16(8):18149–18184.
  • Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials. 2007;28(20):3074–3082.
  • Yang C-Y, Huang L-Y, Shen T-L, et al. Cell adhesion, morphology and biochemistry on nano-topographic oxidized silicon surfaces. Eur Cell Mater. 2010;20:415–430.
  • Riveiro A, Maçon ALB, del Val J, et al. Laser surface texturing of polymers for biomedical applications. Front Phys.2018;6:16.
  • Webb K, Hlady V, Tresco PA. Relationships among cell attachment, spreading, cytoskeletal organization, and migration rate for anchorage-dependent cells on model surfaces. J Biomed Mater Res. 2000;49(3):362–368.
  • Recek N, Resnik M, Motaln H, et al. Cell adhesion on polycaprolactone modified by plasma treatment. Int J Polym Sci. 2016;2016:e7354396.
  • Li L, Crosby K, Sawicki M. Effects of surface roughness of hydroxyapatite on cell attachment and proliferation. J Biotechnol Biomater. 2012;2:150.
  • Dowling DP, Miller IS, Ardhaoui M, et al. Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. J Biomater Appl. 2011;26(3):327–347.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.