0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Poly (hydroxyethylmethacrylate-co-methacryloyl glutamic acid) nanocarrier system for controlled release of levothyroxine

ORCID Icon, ORCID Icon & ORCID Icon
Received 12 Jun 2024, Accepted 05 Jul 2024, Published online: 15 Jul 2024
 

Abstract

The deterioration in the structure of thyroid hormones causes many thyroid-related disorders, which leads to a negative effect on the quality of life, as well as the change in metabolic rate. For the treatment of thyroid disorders, daily use of levothyroxine-based medication is essential. In the study, it is aimed to develop a polymeric nanocarrier that can provide controlled drug release of levothyroxine. In this respect, the p(HEMA-MAGA) nanopolymer was synthesized and then characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Zeta size analysis. The specific surface area of the nanopolymer was calculated as 587.68 m2/g. The pH, temperature, concentration, and time parameters were determined for levothyroxine binding to p(HEMA-MAGA) and optimum binding was determined as pH 7.4, 25 °C, 25 µg/mL concentration, and 30 min adsorption time. As a result of the release performed at pH 7.4, a release profile was observed which increased for the first 3 days and continued for 14 days. According to the results of MTT cell viability analysis, it was determined that the p(HEMA-MAGA) nanopolymeric carrier system had no cytotoxic effect. This developed polymer-based nanocarrier system is suitable for long-term and controlled release of levothyroxine. This is a unique and novel study in terms of developing poly hydroxyethylmethacrylate-co-methacryloyl glutamic acid-based polymeric nanoparticles for levothyroxine release.

Graphical Abstract

HİGHLİGHTS

  • Affinity-based nanoparticles were developed for long-term and controlled release of levothyroxine.

  • p(HEMA-MAGA) nanopolymer was synthesized and characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Zeta size analysis.

  • Optimization studies of levothyroxine binding into p(HEMA-MAGA) nanopolymers were carried out and controlled release studies were made with loading in optimum parameters.

  • MTT cell viability analysis were performed for determining that the p(HEMA-MAGA) nanopolymeric carrier system had no cytotoxic effect.

Acknowledgement

The authors would like to thank Ahmet Çifçi for his help during the experiments in the study.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.