0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Poly (hydroxyethylmethacrylate-co-methacryloyl glutamic acid) nanocarrier system for controlled release of levothyroxine

ORCID Icon, ORCID Icon & ORCID Icon
Received 12 Jun 2024, Accepted 05 Jul 2024, Published online: 15 Jul 2024

References

  • Benvenga S, Carlé A. Levothyroxine formulations: pharmacological and clinical implications of generic substitution. Adv Ther. 2019;36:1–13. 10.6084/m9.figshare.9707564
  • Duntas LH, Jonklaas J. Levothyroxine dose adjustment to optimise therapy throughout a patient’s lifetime. Adv Ther. 2019;36:1–17. 10.6084/m9.figshare.9706403
  • Idrees T, Price J, Piccariello T, et al. Sustained release T3 therapy: animal models and translational applications. Front Endocrinol (Lausanne). 2019;10:544. doi: 10.3389/fendo.2019.00544.
  • Jonklaas J. Update on the treatment of hypothyroidism. Curr Opin Oncol. 2016;28(1):18–25. doi: 10.1097/CCO.0000000000000242.
  • Azran C, Porat D, Fine-Shamir N, et al. Oral levothyroxine therapy postbariatric surgery: biopharmaceutical aspects and clinical effects. Surg Obes Relat Dis. 2019;15(2):333–341. doi: 10.1016/j.soard.2019.01.001.
  • Rostami E, Kashanian S, Azandaryani AH. Preparation of solid lipid nanoparticles as drug carriers for levothyroxine sodium with in vitro drug delivery kinetic characterization. Mol Biol Rep. 2014;41(5):3521–3527. doi: 10.1007/s11033-014-3216-4.
  • Hanqing L, Wei L, Wen Z, et al. Levothyroxine: conventional and novel drug delivery formulations. Endocr Rev. 2023;44(3):393–416. doi: 10.1210/endrev/bnac030.
  • Kamali H, Khodaverdi E, Kaffash E, et al. Optimization and in vitro evaluation of ­ınjectable sustained-release of levothyroxine using PLGA-PEG-PLGA. J Pharm Innov. 2020;16(4):688–698. doi: 10.1007/s12247-020-09480-y.
  • Parveen S, Misra R, Sahoo K. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics, and imaging. Nanomedicine. 2012;8(2):147–166. eBook ISBN: 9781315114361 doi: 10.1016/j.nano.2011.05.016.
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–951. doi: 10.1038/nbt.3330.
  • Pridgen EM, Alexis F, Farokhzad OC. Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin Drug Deliv. 2015;12(9):1459–1473. doi: 10.1517/17425247.2015.1018175.
  • Fan Y, Moon JJ. Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy. Vaccines (Basel). 2015;3(3):662–685. doi: 10.3390/vaccines3030662.
  • Türkmen D, Bereli N, Çorman ME, et al. Molecular imprinted magnetic nanoparticles for controlled delivery of mitomycin C. Artif Cells Nanomed Biotechnol. 2014;42(5):316–322. doi: 10.3109/21691401.2013.823094.
  • Ara MG, Motalleb G, Velasco B, et al. Antineoplastic effect of paclitaxel-loaded polymeric nanocapsules on malignant human ovarian carcinoma cells (SKOV-3). J Mol Liq. 2023;384:122190. doi: 10.1016/j.molliq.2023.122190.
  • Qaiser A, Kiani MH, Parveen R, et al. Design and synthesis of multifunctional polymeric micelles for targeted delivery in Helicobacter pylori infection. J Mol Liq. 2022;363:119802. doi: 10.1016/j.molliq.2022.119802.
  • Rajaei M, Rashedi H, Yazdian F, et al. Chitosan nanocarriers: pioneering encapsulation and targeted delivery of 5-fluorouracil-A comprehensive review. Eur J Med Chem Rep. 2024;12:100172. doi: 10.1016/j.ejmcr.2024.100172.
  • Azhar F, Naureen H, Shahnaz G, et al. Development of chitosan based β-carotene ­mucoadhesive formulation for skin cancer treatment. Int J Biol Macromol. 2023;253(Pt 1):126659. doi: 10.1016/j.ijbiomac.2023.126659.
  • Pourmadadi M, Tajiki A, Abdouss M, et al. Novel carbon quantum dots incorporated polyacrylic acid/polyethylene glycol pH-sensitive nanoplatform for drug delivery. Inorg Chem Commun. 2024;159:111814. doi: 10.1016/j.inoche.2023.111814.
  • Dai F, Chen F, Zhang J, et al. Folate-modified pH and ROS dual-responsive polymeric nanocarriers for targeted anticancer drug delivery. ACS Appl Nano Mater. 2024;7(7):7289–7299. doi: 10.1021/acsanm.4c00021.
  • Santra S, Das S, Dey S, et al. Degradable polymer-based nanoassemblies for precise targeting and drug delivery to breast cancer cells without affecting normal healthy cells. Biomacromolecules. 2024;25(3):1724–1737. doi: 10.1021/acs.biomac.3c01232.
  • Badparvar F, Marjani AP, Salehi R, et al. Dual pH/redox-responsive hyperbranched polymeric nanocarriers with TME-trigger size shrinkage and charge reversible ability for amplified chemotherapy of breast cancer. Sci Rep. 2024;14(1):8567. doi: 10.1038/s41598-024-57296-4.
  • Esen C, Şenay RH, Feyzioğlu E, et al. Poly (hydroxyethylmethacrylate-co-methacryloyl glutamic acid) nanospheres for adsorption of Cd 2+ ions from aqueous solutions. J Nanopart Res. 2014;16(2):2255. doi: 10.1007/s11051-014-2255-z.
  • Bangs LB. Uniform latex particles. In: 41th National Meeting. Seragen Diagnostics, IN: American Association for Clinical Chemistry; 1989.
  • Gregorini A, Ruiz ME, Volonté MG. A derivative UV spectrophotometric method for the determination of levothyroxine sodium in tablets. J Anal Chem. 2013;68(6):510–515. doi: 10.1134/S1061934813060075.
  • Kuru CI, Ulucan F, Kuşat K, et al. A model study by using polymeric molecular ­imprinting nanomaterials for removal of penicillin G. Environ Monit Assess. 2020;192(6):367–367. doi: 10.1007/s10661-020-08294-2.
  • Ulucan-Karnak F, Kuru Cİ, Akgöl S. Development of functionalized polymeric nanomaterial by organosiliconic reagent for boronate affinity-based dopamine recognition. Inorg Chim Acta. 2024;563:121881. doi: 10.1016/j.ica.2023.121881.
  • Korsmeyer RW, Peppas NA. Solute and penetrant diffusion in swellable polymers. III. Drug release from glassy poly (HEMA-co-NVP) copolymers. J Controlled Release. 1984;1(2):89–98. doi: 10.1016/0168-3659(84)90001-4.
  • Hixson AW, Crowell JH. Dependence of reaction velocity upon surface and agitation. Ind Eng Chem. 1931;23(8):923–931. doi: 10.1021/ie50260a018.
  • Higuchi T. Mechanısm of sustaıned-actıon medıcatıon. theoretıcal analysıs of rate of release of solıd drugs dıspersed ın solıd matrıces. J Pharm Sci. 1963;52(12):1145–1149. doi: 10.1002/jps.2600521210.
  • Paarakh MP, Jose PA, Setty CM, et al. Release kinetics–concepts and applications. Int J Pharmacy Res Technol (IJPRT). 2018;8(1):12–20. doi: 10.31838/ijprt/08.01.02.
  • Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Delivery Rev. 2012;64:163–174. doi: 10.1016/j.addr.2012.09.028.
  • Deliloglu-Gurhan SI, Vatansever HS, Ozdal-Kurt F, et al. Characterization of osteoblasts derived from bone marrow stromal cells in a modified cell culture system. Acta Histochem. 2006;108(1):49–57. doi: 10.1016/j.acthis.2005.11.001.
  • Obinu A, Gavini E, Rassu G, et al. Indocyanine green loaded polymeric nanoparticles: physicochemical characterization and interaction studies with Caco-2 cell line by light and transmission electron microscopy. Nanomaterials (Basel). 2020;10(1):133. doi: 10.3390/nano10010133.
  • Baig MS, Owida H, Njoroge W, et al. Development and evaluation of cationic nanostructured lipid carriers for ophthalmic drug delivery of besifloxacin. J Drug Delivery Sci Technol. 2020;55:101496. doi: 10.1016/j.jddst.2019.101496.
  • Liechty WB, Kryscio DR, Slaughter BV, et al. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng. 2010;1(1):149–173. doi: 10.1146/annurev-chembioeng-073009-100847.
  • Yang Y, Opara EC, Liu Y, et al. Microencapsulation of porcine thyroid cell organoids within a polymer microcapsule construct. Exp Biol Med (Maywood). 2017;242(3):286–296. doi: 10.1177/1535370216673746.
  • Kashanian S, Rostami E, Harding FJ, et al. Controlled delivery of levothyroxine using porous silicon as a drug nanocontainer. Aust J Chem. 2016;69(2):204–211. doi: 10.1071/CH15315.
  • Azarbayjani AF, Venugopal JR, Ramakrishna S, et al. Smart polymeric nanofibers for topical delivery of levothyroxine. J Pharm Pharm Sci. 2010;13(3):400–410. doi: 10.18433/J3TS3G.
  • Samira S, Dilgam T, Nizami Z, et al. Research into sorption process of levothyroxine with alkylsubstituted chitosan schiff-based hydrogel. Kimya Problemleri. 2022;20(1):18–27.
  • Aleem AR, Shahzadi L, Alvi F, et al. Thyroxin releasing chitosan/collagen based smart hydrogels to stimulate neovascularization. Materials & Design. 2017;133:416–425. doi: 10.1016/j.matdes.2017.07.053.
  • Malik MH, Shahzadi L, Batool R, et al. Thyroxine-loaded chitosan/carboxymethyl cellulose/hydroxyapatite hydrogels enhance angiogenesis in in-ovo experiments. Int J Biol Macromol. 2020;145:1162–1170. doi: 10.1016/j.ijbiomac.2019.10.043.
  • Safaraliyeva SF, Hummetov AF, Fatullayeva SS, et al. Immobilization of levothyroxine in quaternized N, N-Dietyl N-methyl chitosan hydrogel and chemical nature of the interaction. AChJ. 2022;1:6–12. doi: 10.32737/0005-2531-2022-1-6-12.
  • Tapdiqov S, Taghiyev D, Zeynalov N, et al. Cumulative release kinetics of levothyroxine-Na pentahydrate from chitosan/arabinogalactane based pH sensitive ­hydrogel and it’s toxicology. React Funct Polym. 2022;178:105334. doi: 10.1016/j.reactfunctpolym.2022.105334.
  • Alhawari HH, Abuhamdan RM, Alrashdan M, et al. Development and ın vivo evaluation of sustained release microparticles loaded with levothyroxine for hypothyroidism treatment. J Pharm Sci. 2024;113(6):1566–1571. doi: 10.1016/j.xphs.2024.01.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.