468
Views
8
CrossRef citations to date
0
Altmetric
Articles

Design, synthesis, characterization and performance evaluation of multi-band perfect metamaterial absorber

, , &
Pages 2479-2491 | Received 27 Jan 2015, Accepted 20 Jul 2015, Published online: 16 Sep 2015
 

Abstract

This paper presents the design, synthesis, characterization, and performance evaluation of a metamaterial absorber having four distinct absorption peaks. The proposed absorber is based on the periodic array of the hexagonal closed rings and octa-star structure printed over the dielectric substrate. The dimensions of unit cell are optimized such that the absorption takes place at the distinct frequency near the Federal Communications Commission defined radar spectrum e.g. at 4.10, 6.15, 10.05, and 15.52 GHz with the absorptivity of 0.98, 0.99, 0.99, and 0.99, respectively. The proposed structure is fabricated and the experimental result shows high absorptivity under transverse electric and magnetic polarization for the wide angle of incidence angles, which is in concurrence with the simulated results. The equivalent circuit model of the absorber has been developed sequentially for each of the structure. Furthermore, the complex refractive index of the metamaterial structure has been retrieved in order to have a detailed analysis, which supports the absorption phenomena at all the corresponding frequencies. The proposed metamaterial structure appears to be a potential candidate for absorber applications in the radar cross-section reduction, thermal detectors, and thermal imaging.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.