469
Views
8
CrossRef citations to date
0
Altmetric
Articles

Design, synthesis, characterization and performance evaluation of multi-band perfect metamaterial absorber

, , &
Pages 2479-2491 | Received 27 Jan 2015, Accepted 20 Jul 2015, Published online: 16 Sep 2015

References

  • Veselago VG. The electrodynamics of substances with simultaneously negative values of permittivity and permeability. Sov. Phys. Usp. 1968;10:509–514.
  • Smith DR, Padilla WJ, Vier DC, Nemat-Naser SC, Schultz S. Composite medium with simulataneously negative permeability and permittivity. Phys. Rev. Lett. 2000;84:4184–4187.10.1103/PhysRevLett.84.4184
  • Koschny T, Kafesaki M, Economou EN, Soukoulis CM. Effective medium theory of left-handed materials. Phys. Rev. Lett. 2004;93:107402, 1–4.10.1103/PhysRevLett.93.107402
  • Song W, Sheng X-Q. A cloak scheme insusceptible to the change of material properties. J. Electromagn. Waves Appl. 2012;26:2315–2322.
  • Xiang Q-Y, Feng Q-Y, Huang X-G. Band stop filter based on complementary split ring resonators defected microstructure. J. Electromagn. Waves Appl. 2011;25:1805–1908.
  • Huang Y-J, Wen G-Q, Li J, Zhu W-R, Wang P, Sun Y-H. Wide-angle and polarization-independent metamaterial absorber based on snowflake-shaped configuration. J. Electromagn. Waves Appl. 2013;27:552–229.
  • Zhu W, Zhao X. Metamaterial absorber with random dendritic cells. Eur. Phys. J. Appl. Phys. 2010;50:21101, 1–4.10.1051/epjap/2010031
  • Tao H, Bingham CM, Strikwerda AC, et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Phys. Rev. B. 2008;78:241103, 1–4.10.1103/PhysRevB.78.241103
  • Tao H, Landy NI, Bingham CM, Zhang X, Averitt RD, Padilla WJ. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express. 2008;16:7181–7188.10.1364/OE.16.007181
  • Zhu W, Zhao X. Metamaterial absorber with dendritic cells at infrared frequencies. J. Opt. Soc. Am. B. 2009;26:2832–2835.
  • Wang J, Fan C, Ding P, et al. Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency. Opt. Express. 2012;14:27757–27765.
  • Pu MB, Hu CG, Wang M, et al. Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt. Express. 2011;19:17413–17420.10.1364/OE.19.017413
  • Liu T, Cao X, Gao J, Zheng Q, Li W, Yang H. RCS Reduction of Waveguide slot antenna with metamaterial absorber. IEEE Trans. Antennas. Propag. 2013;61:1479–1484.
  • Yahong L, Xiaopeng Z. Perfect absorber metamaterial for designing low-RCS patch antenna. IEEE Trans. Antennas Propag. Lett. 2014;13:1473–1476.10.1109/LAWP.2014.2341299
  • Greffet JJ, Carminat RA, Joulain K, Mulet JP, Mainguy SA, Chen Y. Coherent emission of light by thermal sources. Nature. 2002;416:61–64.10.1038/416061a
  • Rosenberg J, Shenoi RV, Krishna S, Painter O. Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors. Opt. Express. 2010;18:3672–3686.10.1364/OE.18.003672
  • Liu N, Mesch M, Weiss T, Hentschel M, Giessen H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010;10:2342–2348.10.1021/nl9041033
  • Bermel P, Ghebrebrhan M, Harradon M, et al. Tailoring photonic metamaterial resonances for thermal radiation. Nanoscale Research Lett. 2011;6:549, 1–5.10.1186/1556-276X-6-549
  • Landy NI, Sajube SJ, Mock J, Smith DR, Padilla WJ. Perfect metamaterial absorbers. Phys. Rev. Lett. 2008;100:207402, 1–4.10.1103/PhysRevLett.100.207402
  • Soukoulis CM, Kafesaki M, Economou EN. Negative-index materials: new frontiers in optics. Adv. Mater. 2006;18:1941–1952.10.1002/(ISSN)1521-4095
  • Cheng Y, Yang H. Design, simulation, and measurement of metamaterial absorber. J. Appl. Phys. 2010;108:034906, 1–4.10.1063/1.3311964
  • Gu S, Barrett JP, Hand TH, Popa BI, Cummer SA. A broadband low-reflection metamaterial absorber. J. Appl. Phys. 2010;108:064913, 1–6.10.1063/1.3485808
  • Avitzour Y, Urzhumov YA, Shvets G. Wide-angle infrared absorber based on the negative-index plasmonic metamaterial. Phys. Rev. B. 2009;79:045131, 1–5.10.1103/PhysRevB.79.045131
  • U.S. Department of commerce, Federal Radar Spectrum Requirements (U.S Department of Commerce) 2000.
  • CST Microwave Studio, Available from: http://www.cst.com.
  • Kafesaki M, Tsiapa I, Katsarakis N, Koschny TH, Soukoulis CM, Economou EN. Left-handed metamaterials: the fishnet structure and its variations. Phys. Rev. E. 2007;75:235114, 1–9.10.1103/PhysRevB.75.235114
  • Hong JS. Microstrip filters for RF/Microwave applications. Singapore: Wiley; 2011.
  • Ghodgaonkar DK, Varadan VV, Varadan VK. Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies. IEEE Trans. Instrum. Meas. 1990;39:387–394.10.1109/19.52520
  • Chen X, Grzegorczyk TM, Wu B-I, Pacheco Jr J, Kong JA. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E. 2004;70:016608, 1–7.
  • Chen X, Wu B-I, Kong JA, Grzegorczyk TM. Retrieval of the effective constitutive parameters of bianisotropic metamaterials. Phys. Rev. E. 2005;71:046610, 1–9.
  • Szabo Z, Park G-H, Hedge R, Li E-P. A unique extraction of metamaterial parameters based on kramers-kronig relationship. IEEE Trans. Microwave Theory Tech. 2010;58:2646–2653.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.