98
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploration of a PBG-based cavity structure for a multiple-beam extended interaction klystron

ORCID Icon, &
Pages 347-358 | Received 22 Jun 2022, Accepted 12 Oct 2022, Published online: 04 Nov 2022
 

Abstract

The feasibility of a photonic band-gap (PBG)-based interaction structure was analytically explored for a multiple-beam extended interaction klystron amplifier. This configuration accrues the advantages of the multiple-defect PBG-based extended interaction structure and multiple-beam operation. The mode configurations were analysed through 3D electromagnetic simulation and the applicability of the photonic band-gap cavity was studied for the multiple-beam operation of an extended interaction klystron amplifier. A typical six-defect cavity operating at around 83 GHz was designed for electron–wave interaction at 2π mode with 6 electron beams each carrying 300 mA current at the accelerating potential of 16.5 kV. A particle-in-cell simulation shows that an output power of ∼2 kW is possible with electronic efficiency of around 6.7%. A frequency-scaled-down interaction structure at Ku-band was fabricated and cold measurements were carried out to ascertain the feasibility. The measured values of the frequency for various modes, loaded quality factor and 3 dB bandwidth were found to be within 0.36%, 5.3% and 4.07%, respectively, against those from the simulation.

Acknowledgements

The authors are thankful to the Centre Head, MTRDC for the permission to publish this work. Thanks are also due to Dr. Ashok Bansiwal and Dr. M. Sumathy for the many valuable suggestions and to Shri Y. Muralidhar for support in assembling the experimental cavity and measurement.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.