98
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploration of a PBG-based cavity structure for a multiple-beam extended interaction klystron

ORCID Icon, &
Pages 347-358 | Received 22 Jun 2022, Accepted 12 Oct 2022, Published online: 04 Nov 2022

References

  • Kenneth K, Jack T, Mark B, et al. Integrated 220 GHz source development. Baltimore (MD): Northrop Grumman Systems Corporation; 2013.
  • Chodorow M, Wessel-Berg T. A high-efficiency klystron with distributed interaction. IRE Trans Electron Devices. 1961;8(1):44–55.
  • Chodorow M, Kulke B. An extended-interaction klystron: efficiency and bandwidth. IEEE Trans Electron Devices. 1966;ED-13(4):439–447.
  • Roitman A, Berry D, Steer B. State-of-the-art W-band extended interaction klystron for the CloudSat program. IEEE Trans Electron Devices. 2005;52(5):895–898.
  • Berry D, Deng H, Dobbs R, et al. Practical aspects of EIK technology. IEEE Trans Electron Devices. 2014;61(6):1830–1835.
  • Hyttinen M, Roitman A, Horoyskim P, et al. A compact, high power, sub-millimeter-wave extended interaction klystron. Proceedings of IEEE International Vacuum Electronics Conference; 2008 April 22–24; Monterey, CA.
  • Pasour J, Wright E, Nguyen KT, et al. Demonstration of a multikilowatt, solenoidally focused sheet beam amplifier at 94 GHz. IEEE Trans Electron Devices. 2014;61(6):1630–1636.
  • Kowalski EJ, Shapiro MA, Temkin RJ. An overmoded W-band coupled-cavity TWT. IEEE Trans Electron Devices. 2015;62(5):1609–1616.
  • Stephens JC, Rosenzweig G, Shapiro MA, et al. Design of a 94 GHz photonic bandgap based extended interaction klystron amplifier. Proceedings of IEEE International Vacuum Electronics Conference; 2017 April 24–26; London: 297.
  • Stephens JC, Tucek JC, Basten MA, et al. Design and test of a W-band photonic bandgap extended interaction klystron amplifier. Proceedings of IEEE International Vacuum Electronics Conference; 2018 April 24–26; Monterey, CA: 99–100.
  • Stephens JC, Rosenzweig G, Shapiro MA, et al. Subterahertz photonic crystal klystron amplifier. Phys Rev Lett. 2019;123:244801.
  • Xu Y, Seviour R. Design of photonic crystal klystrons. Proceedings of International Particle Accelerator Conference; 2010 May 23–28; Kyoto, Japan: 4002–4004.
  • Lu S, Zhang C, Wang S, et al. Stability analysis of a planar multiple-beam circuit for W-band high-power extended-interaction klystron. IEEE Trans Electron Devices. 2015;62(9):3042–3048.
  • Smirnova EI, Kesar AS, Mastovsky I, et al. Fabrication and cold test of photonic band gap resonators and accelerator structures. Phys Rev ST Accel Beams. 2005;8:091302.
  • Galdetskiy AV. On the use of metamaterials for increasing the output power of multi-beam klystrons. Proceedings of IEEE International Vacuum Electronics Conference; 2013 May 21–23; Paris, France.
  • CST Studio reference manual. Germany; 2019.
  • Smirnova EI, Chen C, Shapiro MA, et al. Simulation of metallic photonic band gap structures for accelerator applications. Proceedings of International Particle Accelerator Conference; 2001 June 18–22; Chicago: 933–935.
  • Ginzton EL. Microwave measurements. New York (NY): McGraw Hill book Company, Inc.; 1957.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.