187
Views
1
CrossRef citations to date
0
Altmetric
Articles

Trace methane gas detection by wavelength modulated off-axis integrated cavity output spectroscopy

, , &
Pages 581-589 | Received 17 Jul 2018, Accepted 01 Dec 2018, Published online: 20 Dec 2018
 

Abstract

An instrument based on wavelength modulation off-axis integrated cavity output spectroscopy (WM-OA-ICOS) was developed for detection of trace methane (CH4) gas. The wavelength modulation technique was employed to obtain the second harmonic of the CH4 absorption signal. The modulation parameters were optimized to obtain a maximum second harmonic signal. A noise-equivalent absorption sensitivity of 9.4 × 10−11 cm−1 Hz−1/2 (corresponding to a detection limit of 28.9 ppbv for CH4 at this wavelength) was achieved using 2f detection. Compared with the traditional off-axis integrated cavity output spectroscopy (OA-ICOS) technique, WM-OA-ICOS provided an 8-fold improvement in detection sensitivity. CH4 concentration measurements were also achieved by normalization of second harmonic signal to first harmonic signal (2f/1f). The dynamic range and linearity of WM-OA-ICOS for both 2f method and 2f/1f method were investigated. The result showed that the 2f/1f method exhibited better linearity than 2f method.

Additional information

Funding

This experiment is supported by the graduate project of innovative special funds of Nanchang Hangkong University [grant number YC2016054].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 922.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.