74
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effect of tip velocity on weld solidification process of hot-work tool steel

, &
Pages 431-438 | Received 11 Sep 2007, Accepted 06 Nov 2007, Published online: 12 May 2009
 

Abstract

In order to clarify the effect of tip velocity on the weld solidification process of hot-work tool steel (SKD61) during welding, information about microstructure evolution was obtained by the combination of a liquid tin quenching and time resolved X-ray diffraction technique using intense synchrotron radiation. From the experimental results, it was found that the solidification mode was changed from FA mode (L → L+δ → L+δ+γ → L+γ → γ) to A mode (L → L+γ → γ) at high tip velocity. Moreover, the effect of tip velocity on the microstructure selection during solidification between the primary δ, ferrite and the primary γ, austenite was theoretically proven by the Kurz, Giovanola and Trivedi model. Therefore, it was understood that the solidification cracking susceptibility of hot-work tool steel (SKD61) weld metal was increased due to the δ to γ transition of the primary phase.

Acknowledgements

The Spring-8 of the Japan Synchrotron Radiation Research Institute (JASRI) was used in this study (Proposal No. 2007A1577) and we would like to express our deep gratitude to Dr Shinji Sato and Dr Hideki Toyokawa of JSRI for their valuable assistance.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 726.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.