416
Views
4
CrossRef citations to date
0
Altmetric
Articles

Study of particle rebound and deposition on fibre surface

, ORCID Icon, ORCID Icon, , &
Pages 691-702 | Received 16 Jan 2018, Accepted 02 Aug 2018, Published online: 23 Aug 2018
 

ABSTRACT

Fibrous filters, which are the most commonly used means of particle filtration, are generally characterized by the air pressure drop and filtration efficiency. The nature of particle movement and interaction between the particle and fibre is of great importance for measuring the filtration efficiency of fibrous filters. Majority of previous studies investigated particle trajectory and deposition using the ideal trapping model, which assumed that particles will be trapped once contacted with a solid surface (fibre or deposited particle). This work investigates the dynamic performance of particle rebound and statistically analyses the deposition/accumulation of particles on a fibre surface. We use the computational fluid dynamics (CFD) method to calculate the flow field around a row of fibres. Then, we utilize a particle adherence and rebound criterion and simulate the particle trajectory and deposition using a self-developed solver in Fortran code. Effects of face velocity, particle diameter, and particle rebound characteristics on particle rebound and accumulation around one of the fibres are investigated. Additionally, the trajectories and accumulation of particles on the fibre surface are visually presented. Finally, the filtration efficiency of a single fibre is compared with published results. It is found that effects of particle rebound on the particle trajectory and deposition are significantly related to the face velocity and particle diameter. With considering the particle rebound, the filtration efficiency of a single fibre is obviously different from that of previous studies.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Hubei Provincial Natural Science Foundation of China [grant number 2015CFB307]; the Fundamental Research Funds for the Central Universities [grant number 2042014kf0034]; and China Scholarship Council (CSC) [grant number 201606275005].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.