416
Views
4
CrossRef citations to date
0
Altmetric
Articles

Study of particle rebound and deposition on fibre surface

, ORCID Icon, ORCID Icon, , &
Pages 691-702 | Received 16 Jan 2018, Accepted 02 Aug 2018, Published online: 23 Aug 2018

References

  • Helble J, Devito M, Chang YW, et al. Combustion aerosols: factors governing their size and composition and implications to human health. J Air Waste Manage. 2000;50(9):1619–1622.
  • Maynard AD, Kuempel ED. Airborne nanostructured particles and occupational health. J Nanopart Res. 2005;7(6):587–614.
  • Stechkina IB, Kirsch AA, Fuchs NA. Studies on fibrous Aerosol filters. IV. calculation of Aerosol deposition in model filters in the range of maximum penetration. Ann Occup Hyg. 1969;12(1):1.
  • Lee KW, Liu BYH. Theoretical study of Aerosol filtration by fibrous filters. Aerosol Sci Tech. 1982;1(2):147–161.
  • Maze B, Tafreshi HV, Wang Q, et al. A simulation of unsteady-state filtration via nanofiber media at reduced operating pressures. J Aerosol Sci. 2007;38(5):550–571.
  • Natanson GL. Diffusional precipitation of aerosols on a streamlined cylinder with a small capture coefficient. Phys Chem Soc. 1957;112:100–103.
  • Friedlander SK. Mass and heat transfer to single spheres and cylinders at low reynolds number. AIChE J. 1957;3:43–48.
  • Friedlander SK. Theory of Aerosol filtration. Ind Eng Chem. 1958;50:1161–1164.
  • Friedlander SK, Pasceri RE. The efficiency of fibrous Aerosol filters: deposition by diffusion of particles of finite diameter. Can J Chem Eng. 1960;38:212–213.
  • Kuwabara S. The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small reynolds numbers. J Phys Soc Jpn. 1959;14(4):527–532.
  • Happel J. Viscous flow relative to arrays of cylinders. AIChE J. 1959;5(2):174–177.
  • Davies CN. Air filtration. London: Academic Press; 1973.
  • Rao N, Faghri M. Computer modeling of Aerosol filtration by fibrous filters. Aerosol Sci Tech. 1988;8(2):133–156.
  • Geraldliu Z, Wang P. Pressure drop and interception efficiency of multifiber filters. Aerosol Sci Tech. 1997;26(4):313–325.
  • Payatakes AC, Chi T. Particle deposition in fibrous media with dendrite-like pattern, A preliminary model. J Aerosol Sci. 1976;7(2):85–100.
  • Kanaoka C, Kishima T. Observation of the process of dust accumulation on a rigid ceramic filter surface and the mechanism of cleaning dust from the filter surface. Adv Powder Technol. 1999;10(4):417–426.
  • Kanaoka C, Hiragi S, Tanthapanichakoon W. Stochastic simulation of the agglomerative deposition process of Aerosol particles on an electret fiber. Powder Technol. 2001;118(1–2):97–106.
  • Chen S, Cheung CS, Chan CK, et al. Numerical simulation of Aerosol collection in filters with staggered parallel rectangular fibers. Comput Mech. 2002;28(2):152–161.
  • Cheung CS, Cao YH, Yan ZD. Numerical model for particle deposition and loading in electret filter with rectangular split type fibers. Comput Mech. 2005;35(6):449–458.
  • Maschio C, De Arruda ACF. Modeling of the efficiency of fibrous filters through numerical simulation and X-ray tomography. Adv Powder Technol. 2001;12(3):311–329.
  • Przekop R, Moskal A, Gradoń L. Lattice-Boltzmann approach for description of the structure of deposited particulate matter in fibrous filters. J Aerosol Sci. 2003;34(2):133–147.
  • Wang H, Zhao H, Guo Z, et al. Numerical simulation of particle capture process of fibrous filters using lattice boltzmann two-phase flow model. Powder Technol. 2012;227(9):111–122.
  • Wang H, Zhao H, Wang K, et al. Simulation of filtration process for multi-fiber filter using the lattice-boltzmann two-phase flow model. J Aerosol Sci. 2013;66(6):164–178.
  • Li SQ, Marshall JS. Discrete element simulation of micro-particle deposition on a cylindrical fiber in an array. J Aerosol Sci. 2007;38(10):1031–1046.
  • Qian F, Huang N, Zhu X, et al. Numerical study of the gas-solid flow characteristic of fibrous media based on SEM using CFD-DEM. Powder Technol. 2013;249(11):63–70.
  • Qian F, Huang N, Lu J, et al. CFD-DEM simulation of the filtration performance for fibrous media based on the mimic structure. Comput Chem Eng. 2014;71:478–488.
  • Lin KC, Patel R, Tasi JS. Filtration of Aerosol particles by clean elliptical fibers with relevance to pore size: A lattice boltzmann-cellular automaton model. Comput Fluids. 2017;156:534–544.
  • Kerimov A, Mavko G, Mukerji T, et al. Mechanical trapping of particles in granular media. Phys Rev E. 2018;97:105.
  • Yang H, Hogan CJ. Collision rate coefficient for charged dust grains in the presence of linear shear. Phys Rev E. 2017;96:557.
  • Feng Z, Pan W, Zhang H, et al. Evaluation of the performance of an electrostatic enhanced air filter (EEAF) by a numerical method. Powder Technol. 2018;327:201–214.
  • Rodrigues MV, Barrozo MAS, Gonçalves JAS, et al. Effect of particle electrostatic charge on Aerosol filtration by a fibrous filter. Powder Technol. 2017;313:323–331.
  • Karjalainen P, Saari S, Kuuluvainen H, et al. Performance of ventilation filtration technologies on characteristic traffic related Aerosol down to nanocluster size. Aerosol Sci Tech. 2017;51(12):1398–1408.
  • Gac JM, Jackiewicz-Zagórska A, Werner Ł, et al. Numerical modeling of solid deposits reorganization during consecutive solid-liquid Aerosol filtration: influence on the dynamics of filtration efficiency. J Aerosol Sci. 2018;119:13–21.
  • Huang H, Zheng C, Zhao H. Numerical investigation on non-steady-state filtration of elliptical fibers for submicron particles in the “greenfield gap” range. J Aerosol Sci. 2017;114:263–275.
  • Rastegar V, Ahmadi G, Babu SV. Filtration of aqueous colloidal ceria slurries using fibrous filters–An experimental and simulation study. Sep Purif Technol. 2017;176:231–242.
  • Chen L, Ding S, Liang Z, et al. Filtration efficiency analysis of fibrous filters: experimental and theoretical study on the sampling of agglomerate particles emitted from a GDI engine. Aerosol Sci Tech. 2017;51(9):1082–1092.
  • Maddineni AK, Das D, Damodaran RM. Inhibition of particle bounce and re-entrainment using oil-treated filter media for automotive engine intake air filtration. Powder Technol. 2017;322:369–377.
  • Liu C, Hsu PC, Lee HW, et al. Transparent air filter for high-efficiency PM2.5 capture. Nat Commun. 2015;6(1):1–9.
  • Nemoto J, Saito T, Isogai A. Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters. Acs Appl Mater Inter. 2015;7(35):19809–19815.
  • Dahneke B. The capture of Aerosol particles by surfaces. J Colloid Interf Sci. 1971;37(2):342–353.
  • Gallily I, La Mer VK. On the behavior of liquid droplets after impinging on solid surface. J Phys Chem. 1958;62(10):1295–1299.
  • Dahneke B. Measurements of bouncing of small latex spheres. J Colloid Interf Sci. 1973;45(3):584–590.
  • Lehmann MJ, Hardy EH, Meyer J, et al. MRI as a key tool for understanding and modeling the filtration kinetics of fibrous media. Magn Reson Imaging. 2005;23:341–342.
  • Kasper G, Schollmeier S, Meyer J. Structure and density of deposits formed on filter fibers by inertial particle deposition and bounce. J Aerosol Sci. 2010;41(12):1167–1182.
  • Li W, Shen S, Li H. Study and optimization of the filtration performance of multi–fiber filter. Adv Powder Technol. 2016;27(2):638–645.
  • Tehrani SMB, Moosavi A, Sadrhosseini H. Filtration of Aerosol particles by cylindrical fibers within a parallel and staggered array. Microsyst Technol. 2016;22(5):965–977.
  • Karadimos A, Ocone R. The effect of the flow field recalculation on fibrous filter loading: a numerical simulation. Powder Technol. 2003;137(3):109–119.
  • Hosseini SA, Tafreshi HV. Modeling particle filtration in disordered 2-D domains: A comparison with cell models. Sep Purif Technol. 2010;74(2):160–169.
  • Hosseini SA, Tafreshi HV. 3-D simulation of particle filtration in electrospun nanofibrous filters. Powder Technol. 2010;201(2):153–160.
  • Jaganathan S, Tafreshi HV, Pourdeyhimi B. A realistic approach for modeling permeability of fibrous media: 3-D imaging coupled with CFD simulation. Chem Eng Sci. 2008;63(1):244–252.
  • Qian F, Zhang J, Huang Z. Retraction: effects of the operating conditions and geometry parameter on the filtration performance of the fibrous filter. Chem Eng Technol. 2009;32(5):789–797.
  • Paz C, Suárez E, Gil C, et al. Numerical study of the impact of windblown sand particles on a high-speed train. J Wind Eng Ind Aerod. 2015;145(1):87–93.
  • Patankar SV. Numerical heat transfer and fluid flow. New York: Hemisphere Pub Corp; 1980.
  • Liu S, Li H, Shen S, et al. Simulation of particle trajectory in the head–disk interface. Ieee T Magn. 2015;51(11):1–4.
  • Li A, Ahmadi G. Dispersion and deposition of spherical-particles from point sources in a turbulent chemical flow. Aerosol Sci Tech. 1992;16(4):209–226.
  • Dahneke B. Further measurements of bouncing of small latex spheres. J Colloid Interf Sci. 1975;51(1):58–65.
  • Wang HC, John W. Comparative bounce properties of particle materials. Aerosol Sci Tech. 1987;7(3):285–299.
  • Chernyakov AL, Kirsh AA, Kirsh VA. Efficiency of inertial deposition of Aerosol particles in fibrous filters with regard to particle rebounds from fibers. Colloid J + . 2011;73(3):389–393.
  • Hinds WC. Aerosol technology, properties, behavior, and measurement of airborne particles. J Aerosol Sci. 1998;31(9):1121–1122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.