120
Views
0
CrossRef citations to date
0
Altmetric
Review

Molecular biological tools in concrete biodeterioration – a mini review

&
Pages i-xi | Received 28 Nov 2017, Accepted 12 Aug 2018, Published online: 15 May 2022
 

ABSTRACT

Concrete structures develop biofilms when exposed to various environments. At a certain stage, the microbial films destroy the concrete structures leading to significant deterioration. Culture-dependent techniques give an incomplete picture of the microbial communities on the concrete surface. Culture-independent techniques or molecular biological tools pave a new way to analyse microbial communities involved in concrete biodeterioration. This study highlights the need to ‘build’ a database, for Microbiologically Influenced Concrete Corrosion (MICC) involving microbial groups that are being identified using culture-dependent and independent techniques. The role of molecular tools such as 16S rRNA sequencing, denaturing gradient gel electrophoresis (DGGE), Fluorescent in situ hybridization (FISH), Real-time Polymerase Chain Reaction (RT–PCR), microarray analysis, 2-Dimensional gel electrophoresis (2-DE) in analysing microbial communities on the concrete structures have been reviewed in this paper.

GRAPHICAL ABSTRACT

View retraction statement:
RETRACTED ARTICLE:.Notice of Withdrawal

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.