120
Views
0
CrossRef citations to date
0
Altmetric
Review

Molecular biological tools in concrete biodeterioration – a mini review

&
Pages i-xi | Received 28 Nov 2017, Accepted 12 Aug 2018, Published online: 15 May 2022

References

  • Mehta PK, Gerwick BC. Cracking-Corrosion interaction in concrete exposed to marine environment. Concr Int. 1982;4:45–51.
  • Verdier T, Coutand M, Bertron A, et al. A review of indoor microbial growth across building materials and sampling and analysis methods. Build Environ. 2014;80:136–149.
  • Sand W. Microbial mechanisms of deterioration of inorganic substrates – a general mechanistic overview. Int Biodeter Biodegr. 1997;40:183–190.
  • Parker CD. The corrosion of concrete II. The function of Thiobacillus concretivorus (nov-spec) in the corrosion of concrete exposed to atmospheres containing hydrogen sulfide. Aust J Exp Biol Med Sci. 1945;23:91–98.
  • Milde K, Sand W, Wolff W, et al. Thiobacilli of the corroded concrete walls of the Hamburg sewer system. J General Microbiol. 1983;129:1327–1333.
  • Sand W, Bock E. Biodeterioration of mineral materials by microorganisms: biogenic sulfuric and nitric acid corrosion of concrete and natural stone. Geomicrobiol J. 1991;9:129–138.
  • Nica D, Davis J L, Kirby L, et al. Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers. Int Biodeter Biodegr. 2000;46:61–68.
  • Cwalina B. Biodeterioration of concrete. Archit Civ Eng Environ. 2008;4:133–140.
  • George RP, Vinita V, Samal SS, et al. Current understanding and future approaches for controlling microbially influenced concrete corrosion: A review. Concr Res Lett. 2012;3(3):491–506.
  • Aviam O, Bar-Nes G, Zeri Y, et al. Accelerated biodegradation of cement by sulfur-oxidizing bacteria as a bioassay for evaluating immobilization of Low-level radioactive waste. Appl Environ Microbiol. 2004;70:6031–6036.
  • Davis JL, Nica D, Shields K, et al. Analysis of concrete from corroded sewer pipe. Int Biodeter Biodegrad. 1998;42:75–84.
  • Berndt ML. Protection of concrete in cooling towers from microbiologically influenced corrosion. Geotherm Resour Counc Trans. 2001;25:3–7.
  • Gu JD, Ford TE, Berke NS, et al. Biodeterioration of concrete by the fungus Fusarium. Int Biodeterior Biodegrad. 1998;41:101–109.
  • Vinita V, George RP, Ramachandran D, et al. Studies of detailed biofilm characterization on fly ash concrete in comparison with normal and superplasticizer concrete in seawater environments. Environ Technol. 2014;35(1):42–51.
  • Palla F, Anello L, Pecorella S, et al. Characterization of bacterial communities on stone monuments by molecular biology tools. In: Saiz-Jimenez C, editor. Molecular biology and cultural heritage. Lisse: Swets and Zeitlinger BV; 2003. p. 115–118.
  • Jroundi F, Fernández-Vivas A, Rodriguez-Navarro C, et al. Bioconservation of deteriorated monumental calcarenite stone and identification of bacteria with carbonatogenic activity. Microb Ecol. 2010;60:39–54.
  • Dakal TC, Arora PK. Evaluation of potential of molecular and physical techniques in studying biodeterioration. Rev Environ Sci Biotechnol. 2012;11:71–104.
  • Schabereiter-Gurtner C, Piñar G, Lubitz W, et al. An advanced molecular strategy to identify bacterial communities on art objects. J Microbiol Methods. 2001;45:77–87.
  • Bastidas-Arteaga E, Sánchez-Silva M, Chateauneuf A, et al. Coupled reliability model of biodeterioration, chloride ingress and cracking for reinforced concrete structures. Struct Saf. 2008;30:110–129.
  • Gaylarde C, Ribas-Silva M, Warscheid TH. Microbial impact on building materials: an overview. Mater Struct. 2003;36:342–352.
  • Parker CD. The corrosion of concrete. I. The isolation of a species of bacterium associated with the corrosion of concrete exposed to atmosphere containing hydrogen sulphide. Aust J Exp Biol Med Sci. 1945;23:81–90.
  • Márquez JF, Sánchez-Silva M, Husserl J. Review of reinforced concrete biodeterioration mechanisms. VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures. FraMCoS-8; 2013 March 10–14; Toledo-Spain.
  • Sh W, Sanchez-Silva M, Trejo D. Microbial mediated deterioration of reinforced concrete structures. Int Biodeter Biodegrad. 2010;64:748–754.
  • Gaylarde C, Gaylarde PA. A comparative study of the major microbial biomass biofilms on exteriors of buildings in Europe and Latin America. Elsevier. Int Biodeter Biodegrad. 2005;55:131–139.
  • Aira MJ, Jato V, Stchigel AM, et al. Aeromycological study in the Cathedral of Santiago de Compostela (Spain). Int Biodeterior Biodegrad. 2007;60:231–237.
  • Miller A, Dionisio A, Macedo M. Primary bioreceptivity: A comparative study of different Portuguese lithotypes. Elsevier. Int Biodeterior Biodegrad. 2006;57:136–142.
  • Buchannan RE, Gibbons NE, editors, Bergey’s manual of determinative bacteriology; 8th Ed. Baltimore (MD): Williams and Wilkins Co; 456–661, 1974.
  • Cappuccino JG, Sherman N. Microbiology, a laboratory manual. San Francisco (CA): Addison Wesley; 1999.
  • Holt JG, Kreig NR, Sneath PHA, et al. Bergey’s manual of determinative bacteriology. 9th Ed. Hagerstown (MD): Williams and Wilkins; 1994.
  • Islander RL, Devinny JS, Mansfeld F, et al. Microbial ecology of crown corrosion in sewers. J Environ Eng. 1991;117:751–770.
  • Diercks M, Sand W, Bock E. Microbial corrosion of concrete. Experientia. 1991;47:514–516.
  • Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143–169.
  • Crispim CA, Gaylarde CC. Cyanobacteria and biodeterioration of cultural heritage: a review. Microbial Ecol. 2005;49:1–9.
  • Vupputuri S, Fathepure B, Gregory G, et al. Characterization and mediation of microbial deterioration of concrete bridge structures. Oklahoma: Oklahoma State University; 2013.
  • Horton TR, Bruns TD. The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol. 2001;10:1855–1871.
  • Mills HJ, Hodges C, Wilson K, et al. Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico. FEMS Microbiol Ecol. 2003;46:39–52.
  • Martinez RJ, Mills HJ, Story S, et al. Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico. Environ Microbiol. 2006;8:1783–1796.
  • Michaelsen A, Pinzari F, Ripka K, et al. Application of molecular techniques for identification of fungal communities colonizing paper material. Int Biodeterior Biodegr. 2006;58:133–141.
  • Vincke E, Boon N, Verstraete W. Analysis of the microbial communities on corroded concrete sewer pipes-a case study. Appl Microbiol Biotechnol. 2002;57:776–785.
  • Hernandez M, Marchand EA, Roberts D, et al. In situ assessment of active Thiobacillus species in corroding concrete sewers using fluorescent RNA probes. Int Biodeterior Biodegr. 2002;49:271–276.
  • Miller AZ, Laiz L, Gonzalez JM, et al. Reproducing stone monument photosynthetic-based colonization under laboratory conditions. Sci Total Environ. 2008;405:278–285.
  • Becker S, Boger P, Oehlmann R. Ernst A: PCR bias in ecological analysis: A case study for quantitative Taq nuclease assays in analyses of microbial communities. Appl Environ Microbiol. 2000;66:4945–4953.
  • Kurata S, Kanagawa T, Kamagata Y, et al. T-RFLP analysis using a new real-time quantitative PCR method with a quenching primer (QP-PCR)). Ninth International Symposium on Microbial Ecology (ISME-9); 2001; August 26–31; Amsterdam.
  • Omran R. Corrosive lesions at concrete infrastructures as promising source for isolating bioactive Actinobacteria. American Journal of Life Sciences. 2015;3(4):247–256.
  • Jorge W, Domingo S, Randy P R, et al. Molecular survey of concrete sewer biofilm microbial communities. Biofouling. 2011;27(9):993–1001.
  • Cottrell MT, Kirchman DL. Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl Environ Microbiol. 2000;66(12):5116–5122.
  • DeLong EF, Franks DG, Alldredge AL. Phylogenetic diversity of aggregate-attached versus free-living marine bacterial assemblages. Limnol Oceanogr. 1993;38:924–933.
  • Fuhrman JA, McCallum K, Davis A. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific oceans. Appl Environ Microbiol. 1993;59:1294–1302.
  • Giovannoni S, Rappé M. Evolution, diversity and molecular ecology of marine prokaryotes. In: Kirchman DL, editor. Microbial ecology of the oceans. New York (NY): Wiley-Liss; 2000. p. 47–84.
  • Ling AL, Robertson CE, Harris JK, et al. High-Resolution microbial community succession of microbially induced concrete corrosion in working sanitary manholes. PLoS ONE. 2015;10(3):1–12.
  • Iker B, Revetta RP, Garcia J, et al. Molecular survey of concrete biofilm microbial communities. Presented at American Society for Microbiology 110th General Meeting; 2010 May 23–27; San Diego, CA.
  • Berdoulay M, Salvado JC. Genetic characterization of microbial communities living at the surface of building stones. Lett Appl Microbiol. 2009;49(3):311–316.
  • García GM, Marco GMA, Moreno HCX. Characterization of bacterial diversity associated with calcareous deposits and drip-waters, and isolation of calcifying bacteria from two Colombian mines. Microbiol Res. 2016;182:21–30.
  • Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol. 1999;2(3):317–322.
  • Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek. 1998;73:127–141.
  • Teske A, Wawer C, Muyzer G, et al. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl Environ Microbiol. 1996;62(4):1405–1415.
  • Murray AE, Preston CM, Massana R, et al. Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl Environ Microbiol. 1998;64(7):2585–2595.
  • Ferrari VC, Hollibaugh JT. Distribution of microbial assemblages in the central Arctic Ocean basin studied by PCR/DGGE: analysis of a large data set. Hydrobiologia. 1999;401:55–68.
  • Vincke E, Boon N, Verstraete W. Analysis of the microbial communities on corroded concrete sewer pipes? A case study. Appl Microbiol Biotechnol. 2001;57:776–785.
  • Tabatabaei M. PCR-based DGGE and FISH analysis of methanogens in an anaerobic closed digester tank for treating palm oil mill effluent. Environmental Biotechnology. 2009;12(3):1–13.
  • Schrenk MO, Edwards KJ, Goodman RM, et al. Distribution of Thiobacillus ferroxidans and Leptospirillum ferroodixans: implications for generation of acid mine drainage. Science. 1998;279:1519–1522.
  • Edwards KJ, Goebel BM, Rodgers TM, et al. Geomicrobiology of pyrite (FeS2) dissolution: case study at Iron Mountain, California. Geomicrobiol J. 1999;16:155–179.
  • Hernandez M, Marchand EA, Roberts D, et al. In situ assessment of active Thibacillus species in corroding concrete sewers using fluorescent RNA probes. Int Biodeter Biodegr. 2002;49:271–276.
  • Okabe S, Odagiri M, Ito T, et al. Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Appl Environ Microbiol. 2007;73:971–980.
  • Peccia JE, Marchand A, Silverstein J, et al. Development and application of small-subunit rRNA probes for assessment of selected Thiobacillus species and member of the genus Acidiphilium. Appl Environ Microbiol. 2002;66:3065–3072.
  • Urzi C. Microbial deterioration of rocks and marble monuments in Mediterranean Basin: a review. Corroson Rev. 2004;22:441–457.
  • Gonzalez JM. Overview over existing molecular techniques with potential interest in cultural heritage. In: Saiz-Jimenez C, editor. Molecular biology and cultural heritage. Lisse: Swets & Zeitlinger B. V.; 2003. p. 3–13.
  • Urzi C, La Cono V, De Leo F, et al. Fluorescent in situ hybridization (FISH)to study biodeterioration in cultural heritage. In: Saiz-Jimenez C, editor. Molecular biology and cultural heritage. Lisse: Swets & Zeitlinger B. V.; 2003. p. 55 –560.
  • Satoh H, Odagiri M, Ito T, et al. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system. Water Res. 2009;43:4729–4739.
  • He Z, Gentry TJ, Schadt CW, et al. Geochip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J. 2007;1:67–77.
  • Gurdeep R, Sani Rajesh K. Molecular Techniques to Assess Microbial Community Structure, Function and Dynamics in the Environment. Microbes and Microbial Technology. 2011; Agricultural and Environmental Applications.
  • Herzberg M, Elimelech M. Physiology and genetic traits of reverse osmosis membrane biofilms: a case study with Pseudomonas aeruginosa. ISME J. 2008; 2:180–194.
  • Santopolo L, Marchi E, Frediani L, et al. A novel approach combining the Calgary Biofilm Device and Phenotype MicroArray for the characterization of the chemical sensitivity of bacterial biofilms, Biofouling. 2012;28 (9):1023-1032.
  • Yeater KM, Chandra J, Cheng G, et al. Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology. 2007;153(8):2373–2385.
  • Christophe B, Jean-Marc G. Finding gene-expression patterns in bacterial biofilms. Trends in Microbiol. 2005;13(1):16–19.
  • Stanley NR, Britton RA, Grossman AD, et al. Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol. 2003;185(6):1951–1957.
  • Marvin W, Gita M B, Bumgarner E R, et al. Gene expression in Pseudomonas aeruginosa biofilms. Nature. 2001;413:860–864.
  • Raz T, Kapranov P, Lipson D, et al. Protocol dependence of sequencing-based gene expression measurements. PLoS ONE. 2011;6(5):e19287.
  • Wilmes P, Bond PL. Metaproteomics: studying functional gene expression in microbial ecosystems. Trends Microbiol. 2006;14(2):92–97.
  • Schneider T, Riedel K. Environmental proteomics: analysis of structure and function of microbial communities. Proteomics. 2010;10(4):785–798.
  • Siggins A, Gunnigle E, Abram F. Exploring mixed microbial community functioning: recent advances in metaproteomic. FEMS Microbiol. Ecol. 2012;80(2):265–280.
  • Anandkumar B, Haga SW, Wu H-F. Computer applications making rapid advances in high throughput microbial proteomics (HTMP). Comb Chem High Throughput Screen. 2014;17:73–182.
  • Riesenfeld CS, Schloss PD, Handelsman J. Metagenomics: genomic analysis of microbial communities. Annu Rev Genet. 2004;38:525–552.
  • Snyder Lori AS, Nick L, Mark J P, et al. Next-Generation sequencing-the promise and perils of charting the great microbial unknown. Microbiol Ecol. 2009;57:1–3.
  • Vicente G-A, Revetta RP, Santo Domingo JW. Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system. BMC Microbiol. 2012;12:122.
  • Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376–380.
  • Bentley DR. Whole-genome resequencing. Curr Opin Genet Dev. 2006;16:545–552.
  • Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387–402.
  • Whitaker RJ, Banfield JF. Population genomics in natural microbial communities. TRENDS Ecol Evol. 2006;21:508–516.
  • Santo Domingo JW, Revett RP, Iker B, et al. Molecular survey of concrete sewer biofilm microbial communities. Biofouling. 2011;27(9):993–1001.
  • Rotthauwe JH, Witzel KP, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol. 1997;63:4704–4712.
  • Meyer B, Kuever J. Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene. Appl Environ Microbiol. 2007;73:7664–7679.
  • Henry S, Bru D, Stres B, et al. Quantitative detection of the nosZgene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol. 2006;72:5181–5189.
  • Wawer C, Jetten MS, Muyzer G. Genetic diversity and expression of the (NiFe) hydrogenase large-subunit gene of Desulfovibrio spp. in environmental samples. Appl Environ Microbiol. 1997;63:4360–4369.
  • Snoeyenbos-West OL, Nevin KP, Anderson RT, et al. Enrichment of Geobacter species in response to stimulation of Fe (III) reduction in sandy aquifer sediments. Microb Ecol. 2000;39:153–167.
  • McDonald IR, Bodrossy L, Chen Y, et al. Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol. 2008;74:1305–1315.
  • Petri R, Podgorsek L, Imhoff JF. Phylogeny and distribution of the soxB gene among Thiosulfate-oxidizing bacteria. FEMS Microbiol Lett. 2001;197:171–178.
  • Baker GC, Smith JJ, Cowan DA. Review and reanalysis of domain-specific 16S primers. J Microbiol Methods. 2003;55:541–555.
  • Borneman J, Hartin RJ. PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol. 2000;66:4356–4360.
  • Dar SA, Yao L, van Dongen U, et al. Analysis of diversity and activity of sulfate reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. Appl Environ Microbiol. 2007;73:594–604.
  • Giannantonio DJ, Kurth JC, Kurtis KE, et al. Molecular characterizations of microbial communities fouling painted and unpainted concrete structures. Int Biodeterior Biodegrad. 2009;63:30–40.
  • Jayakumar S, Saravanan R. Biodeterioration of coastal concrete structures by macro algae – Chaetomorpha antennina. Mater Res. 2009;12(4):465–472.
  • Gebers R, Hirsch P. In: W. E. Krumbein, editor. Environmental biogeochemistry and geochemistry. 1978; Vol. 3; Xx Ann Arbor: Science Publ. Inc.
  • Gu JD, Ford TE, Mitchell R. Microbiological corrosion of metals. In: RW Revie, editor. Uhlig’ corrosion handbook. 2nd ed. New York: Wiley; 2000b. p. 915–927.
  • Moosavi AN, Dawson JL, King RA. The effect of sulfate reducing bacteria on corrosion of reinforcement concrete, in biologically influenced corrosion. In: Dexter SC, editor. NACE Reference Book No.8. Houston, (TX): National Association of Corrosion Engineers; 1986 p. 291–308.
  • Padival NA, Weiss JS, Arnold RG. Control of Thiobacillus by means of microbial competition: implications for corrosion of concrete sewers. Water Environ. Res. 1995;67(2):201–205.
  • PiervittoriR SO, Laccisaglia A. Literature on lichens and biodeterioration of stonework. I. Lichenologist. 1994;26:171–192.
  • Pilar P, Jan van Santen J, Hirschberg J. Tonal alignment patterns in Spanish. JPhon. 1995;23:429–451.
  • Hirsch P, Eckhardt FEW, Palmer Jr RJ. Fungi active in weathering of rock and stone monuments. Can J Bot. 1995;73:1384–1390.
  • Leznicka S, Kuroczkin J, Krumbein WE, et al. Studies on the growth of selected fungal strains on limestones impregnated with silicone resins. Int Biodeterior Biodegr. 1991;28:91–111.
  • Lim G, Tan TK, Toh A. The fungal problem in buildings in the humid tropics. In: Houghton DR, Smith RN, Eggins HOW, editor. Biodeterioration 7 Part 2. London: Elsevier; 1989. p. 27–37.
  • Line MA. A nitrogen-fixing consortium associated with the bacterial decay of a wooden pipeline. Lett Appl Microbiol. 1997;25:220–224.
  • May E, Lewis FJ, Pereira S, et al. Microbial deterioration of building stone – a review. Biodeterior Abstr. 1993;7:109–123.
  • McCormack K, Morton LHG, Benson J, et al. A preliminary assessment of concrete biodeterioration by microorganisms. In: Gaylarde CC, de Sá ELS, Gaylarde PM, editor. Biodegradation and biodeterioration in Latin America. Porto Alegre: Mircen/UNEP/UNESCO/ICRO-FEPAGRO/ UFRGS; 1996. p. 68–70.
  • Räty K, Raatikainen O, Holmalahti J, et al. Biological activities of actinomycetes and fungi isolated from the indoor air of problem houses. Int Biodeterior Biodegrad. 1994;34(2):143–154.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.