292
Views
10
CrossRef citations to date
0
Altmetric
Articles

Preparation of a thin-film nanocomposite forward osmosis membrane for the removal of organic micro-pollutants from aqueous solutions

, , ORCID Icon & ORCID Icon
Pages 3011-3024 | Received 05 May 2019, Accepted 01 Jan 2020, Published online: 24 Feb 2020
 

ABSTRACT

In this study, a thin-film nanocomposite forward osmosis (TFN FO) membrane was synthesized. The properties and structures of membranes were evaluated for the removal of three organic micro-pollutants from synthetic and real industrial wastewater samples. Laboratory scale fabrication thin-film nanocomposite forward osmosis (FO) membranes composed of a support layer and an active layer. The former was constructed by adding different weight ratios of polyethylene glycol 400 (PEG-400) (0–8 wt.%), polysulfone (PSf), and 1-methyl, 2-pyrrolidone via the phase inversion process, while the latter was synthesized by the incorporation of different weight ratios of graphene oxide (GO) (0–0.012 wt.%), M-phenylenediamine, and 1, 3, 5-benzene trichloride into polyamide layer through the interfacial polymerization reaction. In comparison with thin-film composite (TFC) membranes, the TFN membranes revealed higher hydrophilicity, porosity, water permeability, water flux and salt rejection and lower internal concentration polarization (ICP), reverse salt flux and specific reverse salt flux. The TFN membrane containing 0.008% GO in the active layer and 4% PEG 400 in the support layer exhibited maximum water flux (34.3 LMH) and rejection rate of benzene, phenol and toluene (97%, 84%, and 91%, respectively). The results revealed that the TFN-FO membranes possess a promising potential to improve the water flux and wastewater treatment.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Roshanak Rezaei Kalantary http://orcid.org/0000-0003-4839-1349

Additional information

Funding

The authors would like to acknowledge the Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences for their financial support. This research was supported by the Iran University of Medical Sciences [grant number 97-01-27-33503].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.