314
Views
3
CrossRef citations to date
0
Altmetric
Articles

Reuse of adsorption residuals for enhancing removal of ciprofloxacin from wastewater

, & ORCID Icon
Pages 4438-4454 | Received 07 Dec 2020, Accepted 28 Jun 2021, Published online: 26 Jul 2021
 

ABSTRACT

Costs of water treatment can be reduced significantly if the spent adsorbents can be reused or regenerated. In this study, two residuals of iron adsorbed onto low-cost activated carbon (Fe-MCAC and Fe-MLAC) are reused as new adsorbents for the removal of ciprofloxacin (CIP) from pharmaceuticals wastewater. The residuals were characterized by SEM, XRD, FTIR, Raman spectra and N2-adsorption desorption. The adsorption mechanisms, performance, kinetics, isotherm, thermodynamic and reusability of residuals for CIP removal were evaluated. The isotherm data were well defined by the Freundlich model for both adsorbents (residuals). Moreover, the CIP adsorption follows the pseudo-second-order kinetic model. The maximum adsorption capacity of CIP on Fe-MCAC and Fe-MLAC was 476.19 and 416.67 mg/g, respectively. The maximum removal of CIP was obtained at pH 7 for both new adsorbents. The optimum contact time was found to be 30 and 60 min for Fe-MCAC and Fe-MLAC, respectively. The values of free energy change and enthalpy change for adsorption of CIP indicated the spontaneous, endothermic nature of the adsorption. In addition, the adsorption process was assisted by increasing randomness due to the value of entropy change. Therefore, the residuals of iron adsorption onto activated carbons could be reused as new low-cost adsorbents for antibiotics removal from wastewater.

GRAPHICAL ABSTRACT

Disclosure statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.