322
Views
3
CrossRef citations to date
0
Altmetric
Articles

Reuse of adsorption residuals for enhancing removal of ciprofloxacin from wastewater

, & ORCID Icon
Pages 4438-4454 | Received 07 Dec 2020, Accepted 28 Jun 2021, Published online: 26 Jul 2021

References

  • Nekouei F, Nekouei S, Noorizadeh H. Enhanced adsorption and catalytic oxidation of ciprofloxacin by an Ag/AgCl@N-doped activated carbon composite. J Phys Chem Solids. 2018;114:36–44. doi:10.1016/j.jpcs.2017.11.002.
  • Yu X, Zhang J, Zhang J, et al. Photocatalytic degradation of ciprofloxacin using Zn-doped Cu2O particles: analysis of degradation pathways and intermediates. Chem Eng J. 2019;374(January):316–327. doi:10.1016/j.cej.2019.05.177.
  • Carabineiro SAC, Thavorn-Amornsri T, Pereira MFR, et al. Adsorption of ciprofloxacin on surface-modified carbon materials. Water Res. 2011;45(15):4583–4591. doi:10.1016/j.watres.2011.06.008.
  • Chen H, Gao B, Li H. Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. J Hazard Mater. 2015;282:201–207. doi:10.1016/j.jhazmat.2014.03.063.
  • Bobu M, Yediler A, Siminiceanu I, et al. Degradation studies of ciprofloxacin on a pillared iron catalyst. Appl Catal, B. 2008;83(1–2):15–23. doi:10.1016/j.apcatb.2008.01.029.
  • Huang X, Liu C, Li K, et al. Performance of vertical up-flow constructed wetlands on swine wastewater containing tetracyclines and tet genes. Water Res. 2015;70:109–117. doi:10.1016/j.watres.2014.11.048.
  • Ji L, Liu F, Xu Z, et al. Adsorption of pharmaceutical antibiotics on template-synthesized ordered micro- and mesoporous carbons. Environ Sci Technol. 2010;44(8):3116–3122. doi:10.1021/es903716s.
  • Li X, Chen S, Fan X, et al. Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: In comparison with powder activated carbon. J Colloid Interface Sci. 2015;447:120–127. doi:10.1016/j.jcis.2015.01.042.
  • El-Shafey ESI, Al-Lawati H, Al-Sumri AS. Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets. J Environ Sci (China). 2012;24(9):1579–1586. doi:10.1016/S1001-0742(11)60949-2.
  • Gan Y, Wei Y, Xiong J, et al. Impact of post-processing modes of precursor on adsorption and photocatalytic capability of mesoporous TiO2 nanocrystallite aggregates towards ciprofloxacin removal. Chem Eng J. 2018;349(Jan.):1–16. doi:10.1016/j.cej.2018.05.051.
  • Carabineiro SAC, Thavorn-Amornsri T, Pereira MFR, et al. Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catal Today. 2012;186(1):29–34. doi:10.1016/j.cattod.2011.08.020.
  • Gadipelly CR, Marathe KV, Rathod VK. Effective adsorption of ciprofloxacin hydrochloride from aqueous solutions using metal-organic framework. Sep Sci Technol (Philadelphia). 2018;53(17):2826–2832. doi:10.1080/01496395.2018.1474225.
  • Chatila S, Amparo MR, Carvalho LS, et al. Sulfamethoxazole and ciprofloxacin removal using a horizontal-flow anaerobic immobilized biomass reactor. Environ Technol (UK). 2016;37(7):847–853. doi:10.1080/09593330.2015.1088072.
  • Jia A, Wan Y, Xiao Y, et al. Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant. Water Res. 2012;46(2):387–394. doi:10.1016/j.watres.2011.10.055.
  • El-Kemary M, El-Shamy H, El-Mehasseb I. Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles. J Lumin. 2010;130(12):2327–2331. doi:10.1016/j.jlumin.2010.07.013.
  • Lai C, Zhang M, Li B, et al. Fabrication of CuS/BiVO4 (0 4 0) binary heterojunction photocatalysts with enhanced photocatalytic activity for ciprofloxacin degradation and mechanism insight. Chem Eng J. 2019;358(July 2018):891–902. doi:10.1016/j.cej.2018.10.072.
  • Mahdi-Ahmed M, Chiron S. Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater. J Hazard Mater. 2014;265:41–46. doi:10.1016/j.jhazmat.2013.11.034.
  • Paul T, Dodd MC, Strathmann TJ. Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: transformation products and residual antibacterial activity. Water Res. 2010;44(10):3121–3132. doi:10.1016/j.watres.2010.03.002.
  • Guney G, Sponza DT. Comparison of biological and advanced treatment processes for ciprofloxacin removal in a raw hospital wastewater. Environ Technol (UK). 2016;37(24):3151–3167. doi:10.1080/09593330.2016.1179348.
  • Peng X, Hu F, Huang J, et al. Preparation of a graphitic ordered mesoporous carbon and its application in sorption of ciprofloxacin: kinetics, isotherm, adsorption mechanisms studies. Microporous Mesoporous Mater. 2016;228:196–206. doi:10.1016/j.micromeso.2016.03.047.
  • Wang CJ, Li Z, Jiang WT, et al. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite. J Hazard Mater. 2010;183(1–3):309–314. doi:10.1016/j.jhazmat.2010.07.025.
  • Gupta A, Garg A. Adsorption and oxidation of ciprofloxacin in a fixed bed column using activated sludge derived activated carbon. J Environ Manage. 2019;250(Dec. 2018):109474. doi:10.1016/j.jenvman.2019.109474.
  • Li Z, Hong H, Liao L, et al. A mechanistic study of ciprofloxacin removal by kaolinite. Colloids Surf B. 2011;88(1):339–344. doi:10.1016/j.colsurfb.2011.07.011.
  • Zhang CL, Qiao GL, Zhao F, et al. Thermodynamic and kinetic parameters of ciprofloxacin adsorption onto modified coal fly ash from aqueous solution. J Mol Liq. 2011;163(1):53–56. doi:10.1016/j.molliq.2011.07.005.
  • Zeng ZW, Tan XF, Liu YG, et al. Comprehensive adsorption studies of doxycycline and ciprofloxacin antibiotics by biochars prepared at different temperatures. Front Chem. 2018;6(Mar):1–11. doi:10.3389/fchem.2018.00080.
  • Wang F, Yang B, Wang H, et al. Removal of ciprofloxacin from aqueous solution by a magnetic chitosan grafted graphene oxide composite. J Mol Liq. 2016;222:188–194. doi:10.1016/j.molliq.2016.07.037.
  • Peng X, Hu F, Lam FLY, et al. Adsorption behavior and mechanisms of ciprofloxacin from aqueous solution by ordered mesoporous carbon and bamboo-based carbon. J Colloid Interface Sci. 2015;460:349–360. doi:10.1016/j.jcis.2015.08.050.
  • Jiang WT, Chang PH, Wang YS, et al. Removal of ciprofloxacin from water by birnessite. J Hazard Mater. 2013;250–251:362–369. doi:10.1016/j.jhazmat.2013.02.015.
  • Rakshit S, Sarkar D, Elzinga EJ, et al. Mechanisms of ciprofloxacin removal by nano-sized magnetite. J Hazard Mater. 2013;246–247:221–226. doi:10.1016/j.jhazmat.2012.12.032.
  • Li H, Zhang D, Han X, et al. Adsorption of antibiotic ciprofloxacin on carbon nanotubes: PH dependence and thermodynamics. Chemosphere. 2014;95:150–155. doi:10.1016/j.chemosphere.2013.08.053.
  • Heibati B, Rodriguez-Couto S, Amrane A, et al. Uptake of reactive black 5 by pumice and walnut activated carbon: chemistry and adsorption mechanisms. J Ind Eng Chem. 2014;20(5):2939–2947. doi:10.1016/j.jiec.2013.10.063.
  • Talebi A, Razali YS, Ismail N, et al. Selective adsorption and recovery of volatile fatty acids from fermented landfill leachate by activated carbon process. Sci Total Environ. 2020;707:134533. doi:10.1016/j.scitotenv.2019.134533.
  • Rafatullah M, Ahmad T, Ghazali A, et al. Oil palm biomass as a precursor of activated carbons: a review. Crit Rev Environ Sci Technol. 2013;43(11):1117–1161. doi:10.1080/10934529.2011.627039.
  • Miao MS, Wang YN, Kong Q, et al. Adsorption kinetics and optimum conditions for Cr(VI) removal by activated carbon prepared from luffa sponge. Desalin Water Treat. 2016;57(17):7763–7772. doi:10.1080/19443994.2015.1015453.
  • Nethaji S, Sivasamy A, Mandal AB. Preparation and characterization of corn cob activated carbon coated with nano-sized magnetite particles for the removal of Cr(VI). Bioresour Technol. 2013;134:94–100. doi:10.1016/j.biortech.2013.02.012.
  • El-Sayed GO, Yehia MM, Asaad AA. Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid. Water Resour Ind. 2014;7–8:66–75. doi:10.1016/j.wri.2014.10.001.
  • Qi ZP, Liu Q, Zhu ZR, et al. Rhodamine B removal from aqueous solutions using loofah sponge and activated carbon prepared from loofah sponge. Desalin Water Treat. 2016;57(60):29421–29433. doi:10.1080/19443994.2016.1198929.
  • Kong Q, He X, Shu L, et al. Ofloxacin adsorption by activated carbon derived from luffa sponge: kinetic, isotherm, and thermodynamic analyses. Process Saf Environ Prot. 2017;112:254–264. doi:10.1016/j.psep.2017.05.011.
  • El-bendary N, El-etriby HK, Mahanna H. High performance removal of iron from aqueous solution using modified activated carbon prepared from corn cobs and luffa sponge. Desalin Water Treat. 2021;213:348–357.
  • Gupta VK, Jain CK, Ali I, et al. Removal of cadmium and nickel from wastewater using bagasse fly ash – a sugar industry waste. Water Res. 2003;37(16):4038–4044. doi:10.1016/S0043-1354(03)00292-6.
  • Feng C, Chen YA, Yu CP, et al. Highly porous activated carbon with multi-channeled structure derived from loofa sponge as a capacitive electrode material for the deionization of brackish water. Chemosphere. 2018;208:285–293. doi:10.1016/j.chemosphere.2018.05.174.
  • Das S, Hendry MJ. Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chem Geol. 2011;290(3–4):101–108. doi:10.1016/j.chemgeo.2011.09.001.
  • Mahanna H, Azab M. Adsorption of Reactive Red 195 dye from industrial wastewater by dried soybean leaves modified with acetic acid. Desalin Water Treat. 2020;178:312–321. doi:10.5004/dwt.2020.24960.
  • Genç N, Dogan EC, Yurtsever M. Bentonite for ciprofloxacin removal from aqueous solution. Water Sci Technol. 2013;68(4):848–855. doi:10.2166/wst.2013.313.
  • Younes H, Mahanna H, El-Etriby HK. Fast adsorption of phosphate (PO4-) from wastewater using glauconite. Water Sci Technol. 2019;80(9):1643–1653. doi:10.2166/wst.2019.410.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.