512
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Spatiotemporal analysis of urban heat island intensification in the city of Minneapolis-St. Paul and Chicago metropolitan areas using Landsat data from 1984 to 2016

, &
Pages 1565-1590 | Received 20 Dec 2017, Accepted 12 Jul 2019, Published online: 29 Aug 2019
 

Abstract

Most major cities worldwide are affected Urban Heat Islands – a condition of relatively higher temperatures being observed in one area compared to another that can be caused by a decrease in greenspace. One of the major reasons attributed to this increase in the warming of urban landscapes is the decrease in green space. This concept has received a lot of attention due to the destruction of vegetation for urban development and has prompted long-term spatial-temporal studies of Urban Heat Islands to understanding local climates. The objective of this study is to use Landsat data to examine the temporal intensification of UHIs and their variability from 1984–2016 for the cities of Chicago and Minneapolis-St. Paul. Landsat L4-5 TM), L7 ETM+), OLI and TIRS from 1984 to 2016 was used to examine land surface temperature (LST). Firstly, we converted the digital number (DN) to spectral radiance (L) and to temperature in Kelvin and from kelvin to Celsius and a conversion from Radiance to Top of the Atmosphere Reflectance and estimation of land surface emissivity. Finally, LST was estimated and Urban Heat Island retrieval and anomalies computed to help examine inconsistencies in our data. Our analysis showed year-to-year fluctuations in surface temperature, intensification of UHIs for both metro areas. Using a defined deductive index to identify environmentally critical areas, estimates of UHIs based on LST showed that both metropolitan areas are UHIs with LST > µ + 0.5 × δ. Higher intensification values were observed in 1988 and 2010 for Chicago and 1984, 1999 and 2016 for Minneapolis-St. Paul from analysis. While both areas have the similar climatic conditions, our analysis show differences in UHIs intensification as observed in their urban growth patterns. Chicago experiences a higher UHI intensity compared to Minneapolis-St. Paul and this could be explained by higher number of tall buildings than Minneapolis-St. Paul.

Acknowledgment

We are grateful for the support provided by the Geography and Geoinformation Science Program at the University of North Dakota. Our appreciation also goes to my undergraduate students who assisted with collection and processing of the data. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the University of North Dakota.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.