512
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Spatiotemporal analysis of urban heat island intensification in the city of Minneapolis-St. Paul and Chicago metropolitan areas using Landsat data from 1984 to 2016

, &
Pages 1565-1590 | Received 20 Dec 2017, Accepted 12 Jul 2019, Published online: 29 Aug 2019

Reference

  • Akbari H, Pomerantz M, Taha H. 2001. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar Energy. 70(3):295–310.
  • Alcoforado MJ, Andrade H. 2006. Nocturnal urban heat island in Lisbon (Portugal): main features and modelling attempts. Theor Appl Climatol. 84(1-3):151–159.
  • Amiri R, Weng Q, Alimohammadi A, Alavipanah SK. 2009. Spatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sens Environ. 113(12):2606–2617.
  • Andersson-Sköld Y, Klingberg J, Gunnarsson B, Cullinane K, Gustafsson I, Hedblom M, Knez I, Lindberg F, Ode Sang Å, Pleijel H, et al. 2018. A framework for assessing urban greenery’s effects and valuing its ecosystem services. J Environ Manage. 205:274–285.
  • Angel J. Climate of Illinois narrative (climate of Chicago) - Description, Illinois State Climatologist Office, Illinois State Water Survey, University of IIIinois Urbana-Champaign. https://www.isws.illinois.edu/statecli/General/chicago-climate-narrative.htm
  • Artis DA, Carnahan WH. 1982. Survey of emissivity variability in thermography of urban areas. Remote Sens Environ. 12(4):313–329.
  • Baker LA, Brazel AT, Westerhoff P. 2004. Environmental consequences of rapid urbanization in warm, arid lands: case study of Phoenix, Arizona (USA). WIT Trans Ecol Environ. 72.
  • Barsi JA, Lee K, Kvaran G, Markham BL, Pedelty JA. 2014. The spectral response of the Landsat-8 operational land imager. Remote Sens. 6(10):10232–10251.
  • Becker F, Li Z-L. 1990. Towards a local split window method over land surfaces. Int J Remote Sens. 11(3):369–393.
  • Bhargava A, Lakmini S, Bhargava S. 2017. Urban heat island effect: it’s relevance in urban planning. J Biodivers Endanger Species. 5:187.
  • Bottyán Z, Unger J. 2003. A multiple linear statistical model for estimating the mean maximum urban heat island. Theor Appl Climatol. 75(3):233–243.
  • Brown MJ, Ivey A, McPherson TN, Boswell D, Pardyjak ER. 2004. A study of the Oklahoma City urban heat island using ground measurements and remote sensing. Preprints, Fifth Symposium on the Urban Environment, Vancouver, BC, Canada, American Meteor Society, 2.5A. https://ams.confex.com/ams/pdfpapers/80316.pdf.
  • Cao L, Li P, Zhang L, Chen T. 2008. Remote sensing image-based analysis of the relationship between urban heat island and vegetation fraction. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing.
  • Chander G, Markham B. 2003. Revised Landsat-5 tm radiometric calibration procedures and postcalibration dynamic ranges. IEEE Trans Geosci Remote Sens. 41(11):2674–2677.
  • Chen J, Chen YH, He CY, Shi PJ. 2001. Sub-pixel model for vegetation fraction estimation based on land cover classification. J Remote Sens Beijing. 5:422–426.
  • Chen XL, Zhao HM, Li PX, Yin ZY. 2006. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 104:133–146.
  • Chen YH, Wang J, Li XB. 2002. A study on urban thermal field in summer based on satellite remote sensing. Remote Sens Land Resour. 4:55–59.
  • Cheng J, Liang S, Jindi W, Li X. 2010. A stepwise refining algorithm of temperature and emissivity separation for hyperspectral thermal infrared data. IEEE Trans Geosci Remote Sens. 48:1588–1597.
  • Declet-Barreto J, Brazel AJ, Martin CA, Chow WT, Harlan SL. 2013. Creating the park cool island in an inner-city neighborhood: heat mitigation strategy for Phoenix, AZ. Urban Ecosyst. 16(3):617–635.
  • Dousset B. 1989. AVHRR-derived cloudiness and surface temperature patterns over the Los Angeles area and their relationships to land use. 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium. IGARSS'89; July 10–14; Vancouver, Canada: IEEE; p. 2132–2137.
  • Effat HA, Taha LG, Mansour KF. 2014. Change detection of land over and urban heat islands using multi-temporal landsat images, application in Tanta City, Egypt. Open J Rem Sens Position. 1(2). doi:10.15764/RSP.2014.02001..
  • Ellicott E, Vermote E, Petitcolin F, J, Hook S. 2009. Validation of a new parametric model for atmospheric correction of thermal infrared data. IEEE Trans Geosci Remote Sens. 47(1):295–311.
  • Erickson LE. 2017. Reducing greenhouse gas emissions and improving air quality: two global challenges. Environ Prog Sustain Energy. 36(4):982–988.
  • Finn MP, Reed MD, Yamamoto KH. 2012. A straight forward guide for processing radiance and reflectance for EO-1 ALI, Landsat 5 TM, Landsat 7 ETM and ASTER. http://cegis.usgs.gov/soil_moisture/pdf/A%20Straight %20Forward%20guide%20for%20Processing%20Radiance%20and%20Reflectance_V_24Jul12.pdf.
  • Gallo KP, Adegoke JO, Owen TW, Elvidge CD. 2002. Satellite-based detection of global urban heat-island temperature influence. J Geophys Res. 107(D24):4776. 2002.
  • Gallo KP, Owen TW. 1998. Assessment of urban heat islands: a multi‐sensor perspective for the Dallas‐Ft. worth, USA region. Geocarto Int. 13(4):35–41.
  • Gillespie A, Rokugawa S, Matsunaga T, Cothern JS, Hook S, Kahle AB. 1998. A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Trans Geosci Remote Sens. 36(4):1113–1126.
  • Green Roofs for Healthy Cities. 2016. San Francisco poised to be the first major U.S. city to pass requirements for green roofs on new buildings. http://www.marketwired.com/press-release/san-francisco-poised-be-first-major-us-city-pass-requirements-green-roofs-on-new-buildings-2159098.htm.
  • Grover A, Singh RB. 2015. Analysis of urban heat island (UHI) in relation to normalized difference vegetation index (NDVI): a comparative study of Delhi and Mumbai. Environments. 2(4):125–138.
  • Guhathakurta S, Gober P. 2007. The impact of the Phoenix urban heat island on residential water use. J Am Plan Assoc. 73(3):317–329.
  • Gullickson R. 2017. U.S. metro economies (PDF). IHS global insight; [accessed February 1]. https://www.munibondsforamerica.org/cms/wp-content/uploads/2013/06/Metro-Economies_Job-Impact-to-Municipal-Bonds_June-2013-1.pdf
  • Howard L. 1833. The climate of London, Vol. 2. London (UK): London Harvey and Dorton; p. 1818–1820.
  • IPCC. 2013. Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, and Midgley PM, editors. Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge (UK): Cambridge University Press. p. 29.
  • Jiménez‐Muñoz JC, Sobrino JA. 2003. A generalized single-channel method for retrieving land surface temperature from remote sensing data. J Geophys Res Atmos. 108:22.
  • Jiménez-Muñoz JC, Sobrino JA, Gillespie A, Sabol D, Gustafson WT. 2006. Improved land surface emissivities over agricultural areas using ASTER NDVI. Remote Sens Environ. 103(4):474–487.
  • Jiménez-Muñoz JC, Sobrino JA, Plaza A, Guanter L, Moreno J, Martínez P. 2009. Comparison between fractional vegetation cover retrievals from vegetation indices and spectral mixture analysis: case study of PROBA/CHRIS data over an agricultural area. Sensors. 9(2):768–793.
  • Jones KL, Poole GC, Meyer JL, Bumback W, Kramer EA. 2006. Quantifying expected ecological response to natural resource legislation: a case study of riparian buffers, aquatic habitat, and trout populations. Ecol Soc. 11(2):15.
  • Julien Y, Sobrino JA, Mattar C, Ruescas AB, Jiménez-Muñoz JC, Sòria G, Hidalgo V, Atitar M, Franch B, Cuenca J. 2011. Temporal analysis of normalized difference vegetation index (NDVI) and land surface temperature (LST) parameters to detect changes in the Iberian land cover between 1981 and 2001. Int J Remote Sens. 32(7):2057–2068.
  • Kahn B. 2014. Seventeen U.S. cities on track for hottest year | climate central. http://www.climatecentral.org/news/us-cities-hottest-year-18496
  • Kant Y, Bharath BD, Mallick J, Atzberger C, Kerle N. 2009. Satellite-based analysis of the role of land use/land cover and vegetation density on surface temperature regime of Delhi, India. J Indian Soc Remote Sens. 37(2):201–214.
  • Karl T, Diaz H, Kukla G. 1988. Urbanization: its detection and effect in the United States climate record. J Clim. 1(11):1099–1123.
  • Kawashima S. 1994. Relation between vegetation, surface temperature, and surface composition in the Tokyo region during winter. Remote Sens Environ. 50(1):52–60.
  • Kendall I, Sabri H, Michell B. 2016. Green roofs effects on urban environments. https://www.epa.gov/green-infrastructure/reduce-urban-heat-island-effect.
  • Ketterer C, Matzarakis A. 2015. Comparison of different methods for the assessment of the urban heat island in Stuttgart, Germany. Int J Biometeorol. 59(9):1299–1309.
  • Kim J-P, Guldmann J-M. 2014. Land-use planning and the urban heat island. Land-use planning and the urban heat island. Environ Plan B Plan Des. 41(6):1077–1099.
  • Köhler M, Schmidt M, Grimme FW, Laar M, Lúcia V, Tavares S. 2002. Green roofs in temperate climates and in the hot‐humid tropics – far beyond the aesthetics. Environ Manage Health. 13(4):382–391.
  • Kuang W, Chi W, Lu D, Dou Y. 2014. A comparative analysis of megacity expansions in China and the US: patterns, rates and driving forces. Landsc Urban Plan. 132:121–135.
  • Kuang W, Liu Y, Dou Y, Chi W, Chen G, Gao C, Yang T, Liu J, Zhang R. 2015. What are hot and what are not in an urban landscape: quantifying and explaining the land surface temperature pattern in Beijing, China. Landsc Ecol. 30(2):357–373.
  • Landsat 8 data users handbook | landsat missions. https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS-1574_L8_Data_Users_Handbook_v4.pdf
  • Landsberg HE. 1981. Landsat 7 (L7) data users handbook, Vol. 2014. New York (NY): The Urban Climate Academic Press; p. 154.
  • Laureti F, Martinelli L, Battisti A. 2018. Assessment and mitigation strategies to counteract overheating in urban historical areas in Rome. Climate. 6:18.
  • Lee ACK, Jordan HC, Horsley J. 2015. Value of urban green spaces in promoting healthy living and wellbeing: prospects for planning. Risk Manage Healthc Policy. 8:131–137.
  • Li F, Jackson TJ, Kustas WP, Schmugge TJ, French AN, Cosh MH, Bindlish R. 2004. Deriving land surface temperature from Landsat 5 and 7 during SMEX02/SMACEX. Remote Sens Environ. 92:521–534.
  • Li Z-L, Wu H, Wang N, Qiu S, Sobrino JA, Wan Z, Tang B-H, Yan G. 2013. Land surface emissivity retrieval from satellite data. Int J Remote Sens. 34(9-10):3084–3127.
  • Lin P, Lau SSY, Qin H, Gou Z. 2017. Effects of urban planning indicators on urban heat island: a case study of pocket parks in high-rise high-density environment. Landsc Urban Plan. 168:48–60.
  • Liu L, Zhang Y. 2011. Urban heat island analysis using the Landsat TM data and ASTER data: a case study in Hong Kong. Remote Sens. 3(7):1535–1552.
  • Lo CP, Quattrochi DA. 2003. Land-use and land-cover change, urban heat island phenomenon, and health implications. Photogramm Eng Remote Sens. 69:1053–1063.
  • Lu Y, Feng X, Xiao P, Shen C, Sun J. 2009. Urban heat island in summer of Nanjing based on TM data. 2009 Joint Urban Remote Sensing Event; May 20–22; Shanghai (China): IEEE; p. 1–5.
  • Lynn BH, Carlson TN, Rosenzweig C, Goldberg R, Druyan L, Cox J, Gaffin S, Parshall L, Civerolo K. 2009. A modification to the NOAH LSM to simulate heat mitigation strategies in the New York City metropolitan area. J Appl Meteor Climatol. 48(2):199–216.
  • Ma Y, Kuang Y, Huang N. 2010. Coupling urbanization analyses for studying urban thermal environment and its interplay with biophysical parameters based on TM/ETM + imagery. Int J Appl Earth Observ Geoinf. 12(2):110–118.
  • Mallick J, Kant Y, Bharath BD. 2008. Estimation of land surface temperature over Delhi using Landsat-7 ETM+. J Ind Geophys Union. 12:131–140.
  • Mallick J, Singh CK, Shashtri S, Rahman A, Mukherjee S. 2012. Land surface emissivity retrieval based on moisture index from LANDSAT TM satellite data over heterogeneous surfaces of Delhi city. Int J Appl Earth Observ Geoinf. 19:348–358.
  • Masiello G, Serio C, De Feis I, Amoroso M, Venafra S, Trigo IF, Watts P. 2013. Kalman filter physical retrieval of surface emissivity and temperature from geostationary infrared radiances. Atmos Meas Tech. 6(12):3613–3634.
  • Masiello G, Serio C, Venafra S, Liuzzi G, Göttsche F, F. Trigo I, Watts P. 2015. Kalman filter physical retrieval of surface emissivity and temperature from SEVIRI infrared channels: a validation and intercomparison study. Atmos Meas Tech. 8(7):2981–2997.
  • Melillo JM, Richmond T, Yohe GW, editors. 2014. Climate change impacts in the United States: the third national climate assessment. U.S. global change research program, Vol. 841.
  • Meng X, Cheng J, Liang S. 2017. Estimating land surface temperature from Feng Yun- 3C/MERSI data using a new land surface emissivity scheme. Remote Sens. 9(12):1247.
  • Millstein DE, Fischer ML. 2014. Reflective ‘cool’ roofs under aerosol-burdened skies: radiative benefits across selected Indian cities. Environ Res Lett. 9(10):104014.
  • Minneapolis/St. Paul Climate Page - Minnesota DNR - MN Department of Natural Resources. https://www.dnr.state.mn.us/climate/twin_cities/listings.html
  • Ningrum W. 2018. Urban heat island towards urban climate. IOP Conf Ser Earth Environ Sci. 118:012048.
  • Nowak DJ, Hoehn REI, Bodine AR, Crane DE, Dwyer JF, Bonnewell V, Watson G. 2013. Urban trees and forests of the Chicago region (No. NRS-RB-84). Newtown Square (PA): U.S. Department of Agriculture, Forest Service, Northern Research Station.
  • Oke TR. 1973. City size and the urban heat island. Atmos Environ. 7(8):769–779.
  • Oke TR. 1982. The energetic basis of the urban heat island. Q J R Meteorol Soc. 108:1–24.
  • Peng S, Piao S, Ciais P, Friedlingstein P, Ottle C, Bréon F-M, Nan H, Zhou L, Myneni RB. 2012. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 46(2): 696–703. doi: 10.1021/es2030438
  • Qin Z, Karnieli A, Berliner P. 2001. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int J Remote Sens. 22(18):3719–3746.
  • Redon EC, Lemonsu A, Masson V, Morille B, Musy M. 2017. Implementation of street trees within the solar radiative exchange parameterization of TEB in SURFEX v8.0. Geosci Model Dev. 10(1):385–411.
  • Rehan RM. 2016. Cool city as a sustainable example of heat island management case study of the coolest city in the world. HBRC J. 12(2):191–204.
  • Ritchie H, Roser M. 2018. Urbanization - our world in data; [accessed 2019 Jul 9]. https://ourworldindata.org/urbanization
  • Rouse J, Jr, Haas RH, Schell JA, Deering DW. 1974. Monitoring vegetation systems in the Great Plains with ERTS. In Remote Sensing Center Texas A&M University, College Station, TX, 9.
  • Roy DP, Kovalskyy V, Zhang HK, Vermote EF, Yan L, Kumar SS, Egorov A. 2016. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens Environ. 185:57–70.
  • Runnalls KE, Oke TR. 2000. Dynamics and controls of the near-surface heat island of Vancouver, British Columbia. Phys Geogr. 21(4):283–304.
  • Scott D, Hall CM, Gössling S. 2016. A review of the IPCC fifth assessment and implications for tourism sector climate resilience and decarbonization. J Sustain Tourism. 24:8–30.
  • Senanayake IP, Welivitiya WDDP, Nadeeka PM. 2013. Remote sensing based analysis of urban heat islands with vegetation cover in Colombo city, Sri Lanka using Landsat-7 ETM + data. Urban Clim. 5:19–35.
  • Sharma R, Joshi PK. 2013. Monitoring urban landscape dynamics over Delhi (India) using remote sensing (1998–2011) inputs. J Indian Soc Remote Sens. 41(3):641–650.
  • Singh RB, Grover A. 2014. Remote sensing of urban microclimate with special reference to urban heat island using Landsat thermal data. Geogr Pol. 87(4):555–568.
  • Snyder WC, Wan Z, Zhang Y, Feng YZ. 1998. Classification-based emissivity for land surface temperature measurement from space. Int J Remote Sens. 19(14):2753–2774.
  • Sobrino JA, Jiménez-Muñoz JC, Paolini L. 2004. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens Environ. 90(4):434–440.
  • Somers KA, Bernhardt ES, Grace JB, Hassett BA, Sudduth EB, Wang S, Urban DL. 2013. Streams in the urban heat island: spatial and temporal variability in temperature. Freshw Sci. 32(1):309–326.
  • Stone B. 2007. Urban and rural temperature trends in proximity to large U.S. cities. Int J Climatol. 2007(27):1801.
  • Streutker DR. 2002. A remote sensing study of the urban heat island of Houston, Texas. Int J Remote Sens. 23(13):2595–2608.
  • Streutker DR. 2003. Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sens Environ. 85(3):282–289.
  • Szymanowski M, Kryza M. 2012. Local regression models for spatial interpolation of urban heat island—an example from Wrocław, SW Poland. Theor Appl Climatol. 108(1-2):53–71.
  • Tang B-H, Shao K, Li Z-L, Wu H, Tang R. 2015. An improved NDVI-based threshold method for estimating land surface emissivity using MODIS satellite data. Int J Remote Sens. 36(19-20):4864–4878. United States Geological Survey (USGS). 2016; [accessed 12 Dec 2016]. www.earthexplorer.usgs.gov.
  • University of Minnesota. 2015. New urban heat island study shows surprising variation in air temperatures across Twin Cities | University of Minnesota Twin Cities. Environment Science. https://twin-cities.umn.edu/news-events/new-Urban-heat-island-study-shows-surprising-variation-air-temperatures-across-twin-0.
  • US EPA, OAR. 2014a. Reduce Urban Heat Island Effect. US EPA. https://www.epa.gov/green-infrastructure/reduce-urban-heat-island-effect.
  • US EPA, OAR. 2014b. Using green roofs to reduce heat islands. US EPA. https://www.epa.gov/heat-islands/using-green-roofs-reduce-heat-islands.
  • US EPA, OAR. 2014c. Using trees and vegetation to reduce heat islands. US EPA. https://www.epa.gov/heat-islands/using-trees-and-vegetation-reduce-heat-islands.
  • US EPA, OAR. 2014d. Reduce Heat Island Risks. US EPA. https://www.epa.gov/heat-islands/reduce-heat-island-risks.
  • Valor E, Caselles V. 1996. Mapping land surface emissivity from NDVI: application to European, African, and South American areas. Remote Sens Environ. 57(3):167–184.
  • Valsson S, Bharat A. 2009. Urban heat island: cause for microclimate variations. Architecture-Time Space & People :2–25.
  • Van de Griend AA, Owe M. 2003. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. Int J Remote Sens. 14(6):1119–1131.
  • Vargas-Hernández JG, Pallagst K, Zdunek-Wielgołaska J. 2018. Urban green spaces as a component of an ecosystem. In: J. Marques, editor, Handbook of engaged sustainability. Cham: Springer International Publishing; p. 1–32.
  • Villanueva-Solis J. 2017. Urban heat island mitigation and urban planning: the case of the Mexicali, B. C. Mexico. Am J Clim Change. 06(01):22.
  • Voogt JA, Oke TR. 2003. Thermal remote sensing of urban climates. Remote Sens Environ. 86(3):370–384.
  • Wan Z, Dozier J. 1996. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans Geosci Remote Sens. 34:892–905.
  • Wang F, Qin Z, Song C, Tu L, Karnieli A, Zhao S. 2015. An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Remote Sens. 7(4):4268.
  • Weng Q. 2009. Thermal infrared remote sensing for urban climate and environmental studies: methods, applications, and trends. ISPRS J Photogramm Remote Sens. 64(4):335–344.
  • Weng Q, Lu D, Schubring J. 2004. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens Environ. 89(4):467–483.
  • Xue J, Su B. 2017. Significant remote sensing vegetation indices: a review of developments and applications. J Sensors. 2017(2017):17.
  • Yang Q, Huang X, Li J. 2017. Assessing the relationship between surface urban heat islands and landscape patterns across climatic zones in China. Sci Rep. 7(1):9337.
  • Yu Y, L, Privette J, Privette A. 2008. Evaluation of split-window land surface temperature algorithms for generating climate data records. IEEE Trans Geosci Remote Sens. 46(1):179–192.
  • Yuan F, Bauer ME. 2007. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens Environ. 106(3):375–386.
  • Zhang J, Wang Y. 2008. Study of the relationships between the spatial extent of surface urban heat islands and urban characteristic factors based on Landsat ETM + data. Sensors. 8(11):7453–7468.
  • Zhang XX, Wu PF, Chen B. 2010. Relationship between vegetation greenness and urban heat island effect in Beijing City of China. Proced Environ Sci. 2:1438–1450.
  • Zhang Y, Yiyun C, Qing D, Jiang P. 2012. Study on urban heat island effect based on normalized difference vegetated index: a case study of Wuhan City. Proced Environ Sci. 13:574–581.
  • Zipper S, Schatz JD, Kucharik CJ, Loheide SP. 2017. Urban heat island-induced increases in evapotranspirative demand. Geophys Res Lett. 44(2):873.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.