130
Views
5
CrossRef citations to date
0
Altmetric
Articles

Tensile, thermal, and antibacterial characterization of composites of cellulose/modified Pennisetum purpureum natural fibers with in situ generated copper nanoparticles

, , , , &
Pages 502-508 | Received 02 May 2018, Accepted 01 Jun 2018, Published online: 02 Aug 2018
 

Abstract

Eco-friendly all cellulose composites were developed using cellulose as matrix and nanocomposite (in situ generated copper nanoparticles modified Napier Grass Fibers (NGFs)) as fillers for the antibacterial applications. The content of the nanocomposite filler was increased from 1 wt.% to 5 wt.% in the cellulose matrix. All these composites were characterized by Scanning Electron Microscopy (SEM), Tensile, Thermo Gravimetric Analysis (TGA), and antibacterial tests. SEM-EDX analysis revealed the in situ generation of copper nanoparticles on the surface of the films. Further, all cellulose composites showed good thermal stability. A minimum of 30% increase in char residue was observed in all cellulose nanocomposites compared to matrix. Antibacterial analysis indicated an excellent clear zone formation against both Gram Negative (Escherichia coli) and Gram Positive (Staphylococcus) bacteria. Hence, all these cellulose nanocomposite films can be considered as antibacterial packaging and dressing materials in medical field.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 492.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.