130
Views
5
CrossRef citations to date
0
Altmetric
Articles

Tensile, thermal, and antibacterial characterization of composites of cellulose/modified Pennisetum purpureum natural fibers with in situ generated copper nanoparticles

, , , , &
Pages 502-508 | Received 02 May 2018, Accepted 01 Jun 2018, Published online: 02 Aug 2018

References

  • Lu, Y., Y. Mei, M. Drechsler, and M. Ballauff. 2006. Thermosensitive core–shell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks. Angew. Chem. Int. Ed. Engl. 45:813–816.
  • Aslan, K., M. Wu, J. R. Lakowicz, and C. D. Geddes. 2007. Fluorescent core–shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J Am Chem Soc 129:1524–1525.
  • Hosoya, T., W. Sakamoto, and T. Yogo. 2014. Transparent and self-standing manganese zinc ferrite nanoparticle/cellulose hybrid films. Mater. Lett. 137:491–494.
  • Wang, Q., L. Xing, and X. Xue. 2017. SnO2 graphene nanocomposite paper as both the anode and current collector of lithium ion battery with high performance and flexibility. Mater. Lett. 209:155–158.
  • Rout, S. K., B. C. Tripathy, P. Padhi, B. R. Kar, and K. G. Mishra. 2017. A green approach to produce silver nano particles coated agro waste fibers for special applications. Surf. Interfaces. 7:87–98.
  • Maleki, A., A. A. Jafari, and S. Yousefi. 2017. Green cellulose-based nanocomposite catalyst: design and facile performance in aqueous synthesis of pyranopyrimidines and pyrazolopyranopyrimidines. Carbohydr. Polym. 175:409–416.
  • de Santa Maria, L. C., A. L. C. Santos, P. C. Oliveira, H. S. Barud, Y. Messaddeq, and S. J. L. Ribeiro. 2009. Synthesis and characterization of silver nanoparticles impregnated into bacterial cellulose. Mater. Lett. 63:797–799.
  • Tamayo, L., M. Azócar, M. Kogan, A. Riveros, and M. Páez. 2016. Copper–polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. Mater. Sci. Eng. C. 69:1391–1409.
  • Alippilakkotte, S., S. Kumar, and L. Sreejith. 2017. Fabrication of PLA/Ag nanofibers by green synthesis method using Momordica charantia fruit extract for wound dressing applications. Colloids Surf.: Physicochem. Eng. Aspects. 529:771–782.
  • Salama, A. 2017. Dicarboxylic cellulose decorated with silver nanoparticles as sustainable antibacterial nanocomposite materialEnviron. Nanotechnol. Monit. Manage. 8:228–232.
  • Araújo, I. M. S., R. R. Silva, G. Pacheco, W. R. Lustri, A. Tercjak, J. Gutierrez, J. R. S. Júnior, F. H. C. Azevedo, G. S. Figuêredo, M. L. Vega, S. J. L. Ribeiro, and H. S. Barud. 2018. Hydrothermal synthesis of bacterial cellulose–copper oxide nanocomposites and evaluation of their antimicrobial activity. Carbohydr. Polym. 179:341–349.
  • Zhong, T., G. S. Oporto, and J. Jaczynski. 2017. Antimicrobial Food Packaging with Cellulose-Copper Nanoparticles Embedded in Thermoplastic Resin. In: Grumezescu, A, editor. Food Preservation: Nanotechnology in the Agri-Food Industry. New York: Elsevier Academic Press. p 671–702.
  • Li, R., M. He, T. Li, and L. Zhang. 2015. Preparation and properties of cellulose/silver nanocomposite fibers. Carbohydr. Polym. 115:269–275.
  • Sivaranjana, P., E. R. Nagarajan, N. Rajini, M. Jawaid, and A. Varada Rajulu. 2017. Cellulose nanocomposite films with in situ generated silver nanoparticles using Cassia alata leaf extract as a reducing agent. Int. J. Biol. Macromol. 99:223–232.
  • Muthulakshmi, L., N. Rajini, H. Nellaiah, T. Kathiresan, M. Jawaid, and A. Varada Rajulu. 2017. Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract. Int. J. Biol. Macromol. 95:1064–1071.
  • Shankar, S., and J. W. Rhim. 2014. Effect of copper salts and reducing agents on characteristics and antimicrobial activity of copper nanoparticles. Mater. Lett. 132:307–311.
  • Shankar, S., and J. W. Rhim. 2016. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydr. Polym. 135:18–26.
  • Seymour, R. B., and C. E. Carraher. 1984. Structure–property relationships in polymers. New York: Plenum Press.
  • Xia, G., V. Sadanand, B. Ashok, K. O. Reddy, J. Zhang, and A. V. Rajulu. 2015. Preparation and properties of cellulose/waste leather buff biocomposites. Int. J. Polym. Anal. Character 20:693–703.
  • Kommula, V. P., K. O. Reddy, M. Shukla, T. Marwala, and A. V. Rajulu. 2013. Physicochemical, tensile, and thermal characterization of Napier grass (native African) fiber strands. Int. J. Polym. Anal. Character. 18:303–314.
  • Shankar, S., and J. W. Rhim. 2015. Amino acid-mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydr. Polym. 130:353–363.
  • Shankar, S., A. A. Oun, and J.-W. Rhim. 2018. Preparation of antimicrobial hybrid nano-materials using regenerated cellulose and metallic nanoparticles. Int. J. Biol. Macromol. 107:17–27.
  • Shankar, S., L. Jaiswal, P. R. Selvakannan, K. S. Ham, and J. W. Rhim. 2016. Gelatin-based dissolvable antibacterial films reinforced with metallic nanoparticles. RSC Adv. 6:67340–67352.
  • Orsuwan, A., S. Shankar, L. F. Wang, R. Sothornvit, and J. W. Rhim. 2016. Preparation of antimicrobial agar/banana powder blend films reinforced with silver nanoparticles. Food Hydrocoll. 60:476–485.
  • Quirós, J., J. P. Borges, K. Boltes, I. Rodea-Palomares, and R. Rosal. 2015. Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers. J. Hazard Mater. 299:298–305.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.