18
Views
0
CrossRef citations to date
0
Altmetric
Articles

Enhancing poly(lactic acid)/maleated polypropylene blend with magnesium oxide catalyst: a reactive blending approach for improved mechanical properties

, , ORCID Icon, &
Pages 253-268 | Received 17 Apr 2024, Accepted 14 May 2024, Published online: 24 May 2024
 

Abstract

Some defects of polylactic acid (PLA), especially its poor mechanical properties, were modified using a minimum content of non-biodegradable maleated polypropylene (MAPP). To this end, first, the amount of MAPP was optimized, which was 20 wt.%. Second, MgO was used as a new catalyst to improve the exchange reactions between active groups in both polymers in a reactive blending process. Tensile and izod analyses showed that, compared to neat PLA, with a slight decrease in modulus and tensile strength, elongation at break, and impact resistance were improved in the presence of 20 and 0.1 wt.% of MAPP and MgO, respectively. This improvement in mechanical properties can be related to the exchange reactions between two polymers and the formation of PLA-MAPP block copolymers. MFI and WDCA analyses demonstrated the increase in melt flowability and surface hydrophilicity of the resulting blends, respectively. DSC analysis showed that the Tg values of both polymers approached each other in the presence of catalyst. Also, the elimination of cold crystallization of PLA and the decrease in the Tm and crystallinity of both polymers are clear reasons for the miscibility of the alloy. TEM displayed the proper dispersion of MgO nanoparticles within the polymer matrix, and in addition, the XRD test also proved the decrease in the crystallinity of both polymers and appropriate miscibility of the samples containing 20 and 0.1 wt.% of MAPP and MgO, respectively. These results can promise the design of a compound with the maximum amount of PLA for further use in various industries.

Disclosure statement

The authors declare that there is no competing and conflict of interests.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 492.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.