19
Views
0
CrossRef citations to date
0
Altmetric
Articles

Enhancing poly(lactic acid)/maleated polypropylene blend with magnesium oxide catalyst: a reactive blending approach for improved mechanical properties

, , ORCID Icon, &
Pages 253-268 | Received 17 Apr 2024, Accepted 14 May 2024, Published online: 24 May 2024

References

  • Rahimipour, S., N. Bahri-Laleh, M. Ehsani, A. Hedayati-Moghaddam, J. Mokhtari-Aliabad, S. S. Tabatabaei, and S. A. Mirmohammadi. 2021. Preparation and properties of enhanced Bio-Based PLA/PA6/graphene nanocomposites in the presence of an ester–amide exchange catalyst. J. Polym. Environ. 29:2302–2309. doi:10.1007/s10924-021-02044-2
  • Armentano, I., N. Bitinis, E. Fortunati, S. Mattioli, N. Rescignano, R. Verdejo, M. A. Lopez-Manchado, and J. M. Kenny. 2013. Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog. Polym. Sci. 38:1720–1747. doi:10.1016/j.progpolymsci.2013.05.010
  • Mirmohammadi, S. A., M. Nekoomanesh-Haghighi, S. Mohammadian Gezaz, and N. Bahri-Laleh. 2016. Polybutadiene/polyhedral oligomeric silsesquioxane nanohybrid: investigation of various reactants in polyesterification reaction. Polym. Int. 65:516–525. doi:10.1002/pi.5085
  • Shruthi, S., V. N. Hegde, J. Jayashankar, C. S. Karthik, K. Prashantha, and P. Mallu. 2022. Investigation of thermal, mechanical and dielectrical properties of LiYO2 filled poly(lactic acid) nanocomposites. Int. J. Polym. Anal. Charact. 27:586–600. doi:10.1080/1023666X.2022.2123575
  • Sienkiewicz, M., H. Janik, K. Borzędowska-Labuda, and J. Kucińska-Lipka. 2017. Environmentally friendly polymer-rubber composites obtained from waste tyres: a review. J. Clean. Prod. 147:560–571. doi:10.1016/j.jclepro.2017.01.121
  • Faccini, M., L. Bautista, L. Soldi, A. M. Escobar, M. Altavilla, M. Calvet, A. Domènech, and E. Domínguez. 2021. Environmentally friendly anticorrosive polymeric coatings. Appl. Sci. 11:3446. doi:10.3390/app11083446
  • Afrough, P., N. Bahri-Laleh, A. Hedayati-Moghaddam, S. S. Tabatabaei, J. Mokhtari-Aliabad, F. Amanizadeh-Fini, and S. A. Mirmohammadi. 2021. Polyethylene glycol fumarate/acrylated-silica nanocomposite: synthesis, characterization and in-vitro evaluation. J. Polym. Res. 28:16. doi:10.1007/s10965-020-02399-5
  • Ludwiczak, J., A. Dmitruk, M. Skwarski, P. Kaczyński, and P. Makuła. 2023. UV resistance and biodegradation of PLA-based polymeric blends doped with PBS, PBAT, TPS. Int. J. Polym. Anal. Charact. 28:366–382. doi:10.1080/1023666X.2023.2218696
  • Sun, Y., Z. Zhang, Y. Wang, J. Wang, Z. Zheng, B. Yang, D. Shi, W. Mu, K. Zhou, L. Chen, J. Ying, X. Liu, D. Li, and G. Xu. 2023. Effect of silane coupling agent on the ultraviolet weathering behavior of polylactic acid based composites. Int. J. Polym. Anal. Charact. 28:509–522. doi:10.1080/1023666X.2023.2250620
  • Hedayati, F., N. Moshiri-Gomchi, M. Assaran-Ghomi, S. Sabahi, N. Bahri-Laleh, S. Mehdipour-Ataei, J. Mokhtari-Aliabad, and S. A. Mirmohammadi. 2020. Preparation and properties of enhanced nanocomposites based on PLA/PC blends reinforced with silica nanoparticles. Polym. Adv. Techs. 31:566–573. doi:10.1002/pat.4797
  • Irani-Kolash, E., N. Moshiri-Gomchi, A. Talebi-Liasi, S. Sabahi, N. Bahri-Laleh, S. Mehdipour-Ataei, J. Mokhtari-Aliabad, and S. A. Mirmohammadi. 2020. Preparation of an enhanced nanohybrid alloy based on polylactic acid/polycarbonate/nanosilica. Plast. Rubber. Compos. 49:263–270. doi:10.1080/14658011.2020.1743088
  • Nazari, D., N. Bahri-Laleh, M. Nekoomanesh-Haghighi, S. M. Jalilian, R. Rezaie, and S. A. Mirmohammadi. 2018. New high impact polystyrene: Use of poly(1-hexene) and poly(1-hexene-co-hexadiene) as impact modifiers. Polym. Adv. Techs. 29:1603–1612. doi:10.1002/pat.4265
  • Xingyu, P., X. Yang, and L. Xujuan. 2024. Evaluation of maleic anhydride-modified chitosan as filler reinforced PBAT composite film. Int. J. Polym. Anal. Charact. 29:64–74. 10.1080/1023666X.2024.2310327
  • Perera, H., and H. Banu. 2022. Recent developments in composite reinforcement using date palm fibers for improved performance through physical and chemical modifications. Int. J. Polym. Anal. Charact. 27:446–463. doi:10.1080/1023666X.2022.2110088
  • Graupner, N., H. Fischer, G. Ziegmann, and J. Müssig. 2014. Improvement and analysis of fibre/matrix adhesion of regenerated cellulose fibre reinforced PP-, MAPP-and PLA-composites by the use of eucalyptus globulus lignin. Compos. B Eng. 66:117–125. doi:10.1016/j.compositesb.2014.05.002
  • Zhao, X., L. Chen, D.-F. Li, T. Fu, L. He, X.-L. Wang, and Y.-Z. Wang. 2021. Biomimetic construction peanut-leaf structure on ammonium polyphosphate surface: Improving its compatibility with poly (lactic acid) and flame-retardant efficiency simultaneously. Chem. Eng. J. 412:128737. doi:10.1016/j.cej.2021.128737
  • Mirmohammadi, S. A., S. Sadjadi, and N. Bahri-Laleh. 2018. In Carbon Nanotube-Reinforced Polymers. ed. R. Rafiee, 233–258. Amsterdam: Elsevier.
  • Ataei, N., A. Karbasi, and M. Baghdadi. 2023. Tailoring the transesterification activity of MgO/oxidized g-C3N4 nanocatalyst for conversion of waste cooking oil into biodiesel. Fuel 347:128434. doi:10.1016/j.fuel.2023.128434
  • Lin, G.-P., L. Lin, X.-L. Wang, L. Chen, and Y.-Z. Wang. 2015. PBT/PC blends compatibilized and toughened via copolymers in situ formed by MgO-catalyzed transesterification. Ind. Eng. Chem. Res. 54:1282–1291. doi:10.1021/ie504032w
  • Hosseini-Sarvari, M. 2013. Catalytic organic reactions on ZnO. Cos. 10:697–723. doi:10.2174/1570179411310050003
  • Demirbas, A. 2008. Biodiesel from vegetable oils with MgO catalytic transesterification in supercritical methanol. Energy. Sources. A: Recov. Util. Environ. Eff 30:1645–1651. doi:10.1080/15567030701268401
  • Avila, A. J., G. M. Tonetto, and D. E. Damiani. 2011. Acidolysis of tripalmitin with capric acid using Nb2O5 and MgO as heterogeneous catalysis. Catal. Commun. 12:362–367. doi:10.1016/j.catcom.2010.10.007
  • Skarżewski, J. 1989. Carbon-acylations in the presence of magnesium oxide. A simple synthesis of methanetricarboxylic esters. Tetrahedron 45:4593–4598. doi:10.1016/S0040-4020(01)89094-3
  • Almerindo, G. I., L. F. D. Probst, C. E. M. Campos, R. M. de Almeida, S. M. P. Meneghetti, M. R. Meneghetti, J.-M. Clacens, and H. V. Fajardo. 2011. Magnesium oxide prepared via metal–chitosan complexation method: Application as catalyst for transesterification of soybean oil and catalyst deactivation studies. J. Power. Sources 196:8057–8063. doi:10.1016/j.jpowsour.2011.05.030
  • García, D. E., J. Gavino, D. Escobar, and R. A. Cancino. 2017. Maleinated polyflavonoids and lignin as functional additives for three kinds of thermoplastics. Iran. Polym. J. 26:295–304. doi:10.1007/s13726-017-0519-z
  • Qiu, W., F. Zhang, T. Endo, and T. Hirotsu. 2004. Milling-induced esterification between cellulose and maleated polypropylene. J. Appl. Polymer Sci. 91:1703–1709. doi:10.1002/app.13368
  • Nerenz, B. A., M. A. Fuqua, V. S. Chevali, and C. A. Ulven. 2012. Processing and characterization of a polypropylene biocomposite compounded with maleated and acrylated compatibilizers. Int. J. Polym. Sci. 2012:1–7. doi:10.1155/2012/472078
  • Nakason, C., S. Saiwari, and A. Kaesaman. 2006. Rheological properties of maleated natural rubber/polypropylene blends with phenolic modified polypropylene and polypropylene-g-maleic anhydride compatibilizers. Polym. Test. 25:413–423. doi:10.1016/j.polymertesting.2005.11.006
  • Mutjé, P., M. E. Vallejos, J. Gironès, F. Vilaseca, A. López, J. P. López, and J. A. Méndez. 2006. Effect of maleated polypropylene as coupling agent for polypropylene composites reinforced with hemp strands. J. Appl. Polym. Sci. 102:833–840. doi:10.1002/app.24315
  • Bahri-Laleh, N., M. S. Abbas-Abadi, M. N. Haghighi, Z. Akbari, M. R. Tavasoli, and S. H. Mirjahanmardi. 2010. Effect of halocarbon promoters on polyethylene properties using MgCl2 (ethoxide type)/TiCl4/AlEt3/H2 catalyst system. J. Appl. Polym. Sci. 117:1780–1786. doi:10.1002/app.32124
  • Gómez-Pachón, E., R. Vera-Graziano, and R. M. Campos. 2014. Structure of poly(lactic-acid) PLA nanofibers scaffolds prepared by electrospinning. IOP Conf. Ser: Mater. Sci. Eng. 59:012003. In: Vol. IOP Publishing. doi:10.1088/1757-899X/59/1/012003
  • Wang, D., J. Wang, S. He, Y. Yan, J. Zhang, and J. Dong. 2021. Efficient approach to produce functional polypropylene via solvent assisted solid-phase free radical grafting of multi-monomers. Appl. Petrochem. Res. 11:99–111. doi:10.1007/s13203-020-00261-9
  • Ansari, A., A. Ali, M. Asif, and S. Shamsuzzaman. 2018. Microwave-assisted MgO NP catalyzed one-pot multicomponent synthesis of polysubstituted steroidal pyridines. New J. Chem. 42:184–197. doi:10.1039/C7NJ03742B

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.