227
Views
9
CrossRef citations to date
0
Altmetric
Articles

Guidewire path determination for intravascular applications

&
Pages 628-638 | Received 27 Dec 2013, Accepted 25 May 2015, Published online: 15 Jul 2015
 

Abstract

Vascular diseases are among the major causes of death in developed countries and the treatment of those pathologies may require endovascular interventions, in which the physician utilizes guidewires and catheters through the vascular system to reach the injured vessel region. Several computational studies related to endovascular procedures are in constant development. Thus, predicting the guidewire path may be of great value for both physicians and researchers. However, attaining good accuracy and precision is still an important issue. We propose a method to simulate and predict the guidewire and catheter path inside a blood vessel based on equilibrium of a new set of forces, which leads, iteratively, to the minimum energy configuration. This technique was validated with phantoms using a ∅0.33 mm stainless steel guidewire and compared to other relevant methods in the literature. This method presented RMS error 0.30 mm and 0.97 mm, which represents less than 2% and 20% of the lumen diameter of the phantom, in 2D and 3D cases, respectively. The proposed technique presented better results than other methods from the literature, which were included in this work for comparison. Moreover, the algorithm presented low variation () due to the variation of the input parameters. Therefore, even for a wide range of different parameters configuration, similar results are presented for the proposed approach, which is an important feature and makes this technique easier to work with. Since this method is based on basic physics, it is simple, intuitive, easy to learn and easy to adapt.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes

1. Av Prof. Luciano Gualberto, Travessa 3, 158 – sala D2-06, 05508-970.

Additional information

Funding

This work was supported by the FAPESP [grant number 2011/01314-3].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.