425
Views
3
CrossRef citations to date
0
Altmetric
Articles

Spiral blood flow in aortarenal bifurcation models

, &
Pages 964-976 | Received 25 Aug 2014, Accepted 10 Aug 2015, Published online: 28 Sep 2015
 

Abstract

The presence of a spiral arterial blood flow pattern in humans has been widely accepted. It is believed that this spiral component of the blood flow alters arterial haemodynamics in both positive and negative ways. The purpose of this study was to determine the effect of spiral flow on haemodynamic changes in aorta–renal bifurcations. In this regard, a computational fluid dynamics analysis of pulsatile blood flow was performed in two idealised models of aorta–renal bifurcations with and without flow diverter. The results show that the spirality effect causes a substantial variation in blood velocity distribution, while causing only slight changes in fluid shear stress patterns. The dominant observed effect of spiral flow is on turbulent kinetic energy and flow recirculation zones. As spiral flow intensity increases, the rate of turbulent kinetic energy production decreases, reducing the region of potential damage to red blood cells and endothelial cells. Furthermore, the recirculation zones which form on the cranial sides of the aorta and renal artery shrink in size in the presence of spirality effect; this may lower the rate of atherosclerosis development and progression in the aorta–renal bifurcation. These results indicate that the spiral nature of blood flow has atheroprotective effects in renal arteries and should be taken into consideration in analyses of the aorta and renal arteries.

Disclosure statement

The authors declare that they have no other competing interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.