425
Views
3
CrossRef citations to date
0
Altmetric
Articles

Spiral blood flow in aortarenal bifurcation models

, &
Pages 964-976 | Received 25 Aug 2014, Accepted 10 Aug 2015, Published online: 28 Sep 2015

References

  • Albert S, Balaban RS, Neufeld EB, Rossmann JS. 2014. Influence of the renal artery ostium flow diverter on hemodynamics and atherogenesis. J Biomech. 47:1594–1602.10.1016/j.jbiomech.2014.03.006
  • Berliner JA, Navab M, Fogelman AM, Frank JS, Demer LL, Edwards PA, Watson AD, Lusis AJ. 1995. Atherosclerosis: basic mechanisms: oxidation, inflammation, and genetics. Circulation. 91:2488–2496.10.1161/01.CIR.91.9.2488
  • Bluestein D, Gutierrez C, Londono M, Schoephoerster RT. 1999. Vortex shedding in steady flow through a model of an arterial stenosis and its relevance to mural platelet deposition. Ann Biomed Eng. 27:763–773.10.1114/1.230
  • Bluestein D, Niu LJ, Schoephoerster RT, Dewanjee MK. 1997. Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Ann Biomed Eng. 25:344–356.10.1007/BF02648048
  • Cheer AY, Dwyer HA, Barakat AI, Sy E, Bice M. 1998. Computational study of the effect of geometric and flow parameters on the steady flow field at the rabbit aorto-celiac bifurcation. Biorheology. 35:415–435.10.1016/S0006-355X(99)80020-1
  • Chen Z, Fan Y, Deng X, Xu Z. 2009. Swirling flow can suppress flow disturbances in endovascular stents: a numerical study. ASAIO. 55:543–549.10.1097/MAT.0b013e3181b78e46
  • Dubel GJ, Murphy TP. 2008. The role of percutaneous revascularization for renal artery stenosis. Vasc Med. 13:141–156.10.1177/1358863x07085408
  • Elkayam U, Gardin JM, Berkley R, Hughes CA, Henry WL. 1983. The use of Doppler flow velocity measurement to assess the hemodynamic response to vasodilators in patients with heart failure. Circulation. 67:377–383.10.1161/01.CIR.67.2.377
  • Frazin L, Lanza G, Mehlman D. 1990. Rotational blood flow in the thoracic aorta. Clin Res. 38:331A.
  • Fry DL. 1968. Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res. 22:165–197.
  • Frydrychowicz A, Harloff A, Jung B, Zaitsev M, Weigang E. 2007. Time-resolved three-dimensional magnetic resonance flow analysis at 3T: visulization of normal and pathological aortic vascular hemodynamics. J Comput Assist Tomogr. 31:9–15.10.1097/01.rct.0000232918.45158.c9
  • Glagov S, Zarins C, Giddens DP, Ku DN. 1988. Hemodynamics and atherosclerosis: insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med. 112:1018–1031.
  • Gorring N, Kark L, Simmons A, Barber T. 2015. Determining possible thrombus sites in an extracorporeal device, using computational fluid dynamics-derived relative residence time. Comput Methods Biomech Biomed Eng. 18:628–634.10.1080/10255842.2013.826655
  • Grigioni M, Daniele C, Morbiducci U, Del Gaudio CD, D’Avenio G, Balducci A, Barbaro V. 2005. A mathematical description of blood spiral flow in vessels: application to a numerical study of flow in arterial bending. J Biomech. 38:1375–1386.10.1016/j.jbiomech.2004.06.028
  • Haa H, Leea SJ. 2014. Effect of swirling inlet condition on the flow field in a stenosed arterial vessel model. Med Eng Phys. 36:119–128.10.1016/j.medengphy.2013.10.008
  • Hassani K, Navidbakhsh M, Rostami M. 2007. Modeling of the aorta artery aneurysms and renal artery stenosis using cardiovascular electronic system. Biomed Eng Online. 6:22–31.10.1186/1475-925X-6-22
  • Hoskins PR, Fleming A, Stonebndge P, Allan PT, Cameron DC. 1994. Scan-plane vector maps and secondary flow motions in arteries. Eur J Ultrasound. 1:159–169.
  • Houston JG, Gandy SJ, Milne W, Dick JB, Belch JJ, Stonebridge PA. 2004. Spiral laminar flow in the abdominal aorta: a predictor of renal impairment deterioration in patients with renal artery stenosis? Nephrol Dial Transplant. 19:1786–1791.10.1093/ndt/gfh238
  • Javadzadegan A, Fakhim B, Behnia M, Behnia M. 2014. Fluid–structure interaction investigation of spiral flow in a model of abdominal aortic aneurysm. Eur J Mech B Fluids. 46:109–117.10.1016/j.euromechflu.2014.02.011
  • Kaatee R, Beek FJ, Verschuyl EJ, vd Ven PJ, Beutler JJ, van Schaik JP, Mali WP. 1996. Atherosclerotic renal artery stenosis: ostial or truncal? Radiology. 199:637–640.10.1148/radiology.199.3.8637979
  • Kagadis GC, Skouras ED, Bourantas GC, Paraskeva CA, Katsanos K, Karnabatidis D, Nikiforidis GC. 2008. Computational representation and hemodynamic characterization of in vivo acquired severe stenotic renal artery geometries using turbulence modeling. Med Eng Phys. 30:647–660.10.1016/j.medengphy.2007.07.005
  • Ku DN, Glagov S, Moore JE Jr., Zarins CK. 1989. Flow patterns in the abdominal aorta under simulated postprandial and exercise conditions: an experimental study. J Vasc Surg. 9:309–316.10.1016/0741-5214(89)90051-7
  • Kwon GP, Schroeder JL, Amar MJ, Remaley AT, Balaban RS. 2008. Contribution of macromolecular structure to the retention of low-density lipoprotein at arterial branch points. Circulation. 117:2919–2927.10.1161/CIRCULATIONAHA.107.754614
  • Lao D, Parasher PS, Cho KC, Yeghiazarians Y. 2011. Atherosclerotic renal artery stenosis-diagnosis and treatment. Mayo Clin Proc. 86:649–657.10.4065/mcp.2011.0181
  • Liepsch D, Poll A, Strigberger J, Sabbah HN, Stein PD. 1989. Flow visualization studies in a mold of the normal human aorta and renal arteries. J Biomech Eng. 111:222–227.10.1115/1.3168369
  • Linge F, Hye MA, Paul MC. 2014. Pulsatile spiral blood flow through arterial stenosis. Comput Methods Biomech Biomed Eng. 17:1727–1737.10.1080/10255842.2013.765411
  • Lutz RJ, Hsu L, Menawat A, Zrubek J, Edwards K. 1983. Comparison of steady and pulsatile flow in a double branching arterial model. J Biomech Eng. 16:753–766.10.1016/0021-9290(83)90084-2
  • Maier SE, Meier D, Boesiger P, Moser UT, Vieli A. 1989. Human abdominal aorta: comparative measurements of blood flow with MR imaging and multigated Doppler US. Radiology. 171:487–492.10.1148/radiology.171.2.2649924
  • McDonald D. 1960. Blood flow in arteries. Baltimore (MD): Wilkins & Wilkins.
  • McGloughlin T, Walsh MT. 2011. Arterial circulation and disease processes: image-based computational modeling of the human circulatory and pulmonary systems. London: Springer Science + Business Media; p. 269–311.
  • Moore JE Jr., Ku DN. 1994. Pulsatile velocity measurements in a model of the human abdominal aorta under resting conditions. J Biomech Eng. 116:337–346.10.1115/1.2895740
  • Moore JE Jr., Ku DN, Zarins CK, Glagov S. 1992. Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: implications for increased susceptibility to atherosclerosis. J Biomech Eng. 114:391–397.10.1115/1.2891400
  • Morbiducci U, Ponzini R, Rizzo G, Cadioli M, Esposito A, Montevecchi FM, Redaelli A. 2011. Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomech Model Mechanobiol. 10:339–355.10.1007/s10237-010-0238-2
  • Neufeld EB, Springer D, Yu Q, Balban RS. 2010. The renal artery ostium flow diverter: structure and potential role in atherosclerosis. Atherosclerosis. 211:153–158.10.1016/j.atherosclerosis.2010.01.024
  • Nguyen ND, Haque AK. 1990. Effect of hemodynamic factors on atherosclerosis in the abdominal aorta. Atherosclerosis. 84:33–39.10.1016/0021-9150(90)90005-4
  • Paul MC, Larman A. 2009. Investigation of spiral blood flow in a model of arterial stenosis. Med Eng Phys. 31:1195–1203.10.1016/j.medengphy.2009.07.008
  • Pedersen EM, Sung HW, Yoganathan AP. 1994. Influence of abdominal aortic curvature and resting versus exercise conditions on velocity fields in the normal abdominal aortic bifurcation. J Biomech Eng. 116:347–354.10.1115/1.2895741
  • Prakash S, Ethier CR. 2001. Requirements for mesh resolution in 3D computational hemodynamics. J Biomech Eng. 123:134–144.10.1115/1.1351807
  • Rieu R, Friggi A, Pelissier R. 1985. Velocity distribution along an elastic model of human arterial tree. J Biomech. 18:703–715.10.1016/0021-9290(85)90025-9
  • Sabbah HN, Hawkins ET, Stein PD. 1984. Flow separation in the renal arteries. Arterioscler Thromb Vasc Biol. 4:28–33.10.1161/01.ATV.4.1.28
  • Safian RD, Textor SC. 2001. Renal-artery stenosis. N Engl J Med. 344:431–442.10.1056/NEJM200102083440607
  • Segalova PA, Venkateswara Rao KT, Zarins CK, Taylor CA. 2012. Computational modeling of shear-based hemolysis caused by renal obstruction. J Biomech Eng. 134:021003–021007.10.1115/1.4005850
  • Stonebridge PA, Brophy CM. 1991. Spiral laminar flow in arteries? Lancet. 338:1360–1361.10.1016/0140-6736(91)92238-W
  • Stonebridge PA, Hoskins PR, Allan PL, Belch JJF. 1996. In-vivo spiral laminar flow. Clin Sci. 91:17–21.10.1042/cs0910017
  • Taylor CA, Hughes TJ, Zarins CK. 1999. Effect of exercise on hemodynamic conditions in the abdominal aorta. J Vasc Surg. 29:1077–1089.10.1016/S0741-5214(99)70249-1
  • Vignon-Clementel IE, Alberto Figueroa CA, Jansen KE, Taylor CA. 2006. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng. 195:3776–3796.10.1016/j.cma.2005.04.014
  • Wilcox DC. 1993. Turbulence modelling for CFD. La Cañada, CA: DCW.
  • Yamaguchi R, Kohtoh K. 1994. Sinusoidal variation of wall shear stress in daughter tube through 45 deg branch model in laminar flow. J Biomech Eng. 116:119–126.10.1115/1.2895695
  • Yamamoto T, Ogasawara Y, Kimura A, Tanaka H, Hiramatsu O, Tsujioka K, Lever MJ, Parker KH, Jones CJ, Caro CG, Kajiya F. 1996. Blood velocity profiles in the human renal artery by doppler ultrasound and their relationship to atherosclerosis. Arterioscler Thromb Vasc Biol. 16:172–177.10.1161/01.ATV.16.1.172
  • Yim PJ, Cebral JR, Weaver A, Lutz RJ, Soto O, Vasbinder GB, Ho VB, Choyke PL. 2004. Estimation of the differential pressure at renal artery stenoses. Magn Reson Med. 51:969–977.10.1002/(ISSN)1522-2594
  • Zhang W, Qian Y, Lin J, Lv P, Karunanithi K, Zeng M. 2014. Hemodynamic analysis of renal artery stenosis using computational fluid dynamics technology based on unenhanced steady-state free precession magnetic resonance angiography: preliminary results. Int J Cardiovasc Imaging. 30:367–375.10.1007/s10554-013-0345-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.