85
Views
5
CrossRef citations to date
0
Altmetric
Miscellany

Heavy axle study: impact of higher rail car weight limits on short-line railroad bridge structures

, &
Pages 91-104 | Received 01 Apr 2003, Accepted 08 Sep 2003, Published online: 25 Jan 2007
 

Abstract

The fundamental objective of this study, sponsored by the Pennsylvania Department of Transportation's Bureau of Rail Freight, Ports, and Waterways, is to establish and implement a methodology to quantify the financial impact of higher gross car weights (GCW) on the infrastructure load carrying capacity of short-line railroads (SLRRs) operating within the Commonwealth of Pennsylvania. The research team developed a stratified random sampling methodology to establish a bridge sample due to the large number of railroad bridges in Pennsylvania. A stratified random sampling plan was developed to ensure that the bridge sample contained bridges of each material type and bridge type expected to significantly influence the strengthening cost estimate. Collecting and creating a complete database of railroad bridges was a large task due to the number of SLRRs and inconsistent record keeping by many SLRRs. There are an estimated 2000 bridges serving Pennsylvania SLRRs of which the eventual study population included 1174 bridges for consideration. The 25 sample bridges, drawn from this population, were evaluated structurally based on the American Railway Engineering Association (AREA) 1996 Specification and field inspections conducted by the research team. The structural evaluations were used as a basis to establish load-carrying capacity predictions and required strengthening for under-capacity structures. Five of the 25 sample bridges will not safely support either the 1273-kN (286,000-lbf) or the 1402-kN (315,000-lbf) GCW load. Bridge strengthening schemes were developed for each of the five under-capacity bridges. Cost estimates for each strengthening scheme were obtained from contractors and based on recent similar work completed in the Commonwealth of Pennsylvania. Upgrade costs for the bridge sample were then extrapolated to the entire SLRR bridge population, resulting in an estimated state-wide bridge upgrade cost of $8,500,000 with a 32% width for a 95% confidence level. The study presents a procedure adaptable to transportation agencies faced with a significant inventory of SLRR bridges that may be subjected to increased railcar loading.

Email: [email protected]

Email: [email protected]

Acknowledgements

The authors are grateful to the Bureau of Rail Freight, Ports, and Waterways within Pennsylvania Department of Transportation for their financial support of this research. The authors also wish to thank the Buffalo and Pittsburgh Railroad, the Wheeling and Lake Erie Railroad, and Wayne Duffett, bridge consulting engineer, for their assistance in the data collection and inspection stages. The writers appreciate the help of all the short-line railroads that provided data for this research. The authors thank Ece Erdogmus and Dr Thomas Boothby for their assistance during the masonry arch evaluations.

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 772.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.