261
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Improved Braking Performance of Cu-Based Brake Pads by Utilizing Cu-Coated SiO2 Powder

, , , , , , & show all
Pages 829-840 | Received 04 Feb 2020, Accepted 07 Apr 2020, Published online: 12 May 2020
 

Abstract

The braking performance of copper-based brake pads containing Cu-coated SiO2 and uncoated SiO2 was tested on a reduced-scale dynamometer. Results showed that both the stability of the friction coefficient and the wear resistance are improved and the fade phenomenon of the friction coefficient is effectively alleviated during continuous emergency braking (350 km/h, 0.48 MPa) by introducing Cu-coated SiO2 into the copper-based brake pad. The better braking performance is closely related to the improved interfacial bonding and the firm pinning of SiO2 particles on the friction surface. The copper coating on SiO2 reduces the spalling of SiO2 particles from the copper matrix during the braking process. Therefore, for the sample containing Cu-coated SiO2, the SiO2 particles pinned on the friction surface act as trapping sites for wear debris, promoting the formation of secondary plateaus. As a result, the existence of stable primary and secondary plateaus in the braking process promotes the stability of the friction coefficient.

Additional information

Funding

This work was financially supported by the National Key R&D Program of China (2016YFB0301400), National Natural Science Foundation of China (51974029, 51574029), and 111 Project (No. B170003).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.