Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 5
298
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical study of discrete film cooling near the rudder shaft of a hypersonic air fin model

, ORCID Icon, &
Pages 679-701 | Received 04 Oct 2022, Accepted 09 Mar 2023, Published online: 03 Apr 2023
 

Abstract

Rudder shaft, connecting the air fin to the fuselage of hypersonic vehicles through the mounting gap, is subject to intense aerodynamic heating, necessitating thermal protection techniques. Film cooling is a promising technology to mitigate this heating, but its thermal protection performance on the rudder shaft, as well as aerothermal mechanisms behind major design parameters, is still unexploited. This paper conducts numerical simulations to evaluate thermal protection performance of discrete film cooling applied to the rudder shaft of an air fin in hypersonic flow. Three discrete cooling holes are arranged on the flat plate upstream of the rudder shaft. Parametric studies are then executed to investigate the effect of cooling hole locations and coolant injection angles on thermal protection performance of the rudder shaft. k-ω SST model is used to solve the Reynolds-Averaged Navier-Stokes equations, and perfect gas without chemical reaction is adopted. Total pressure of the freestream is set as 0.6 MPa, while that of the coolant is fixed at 12000 Pa. The freestream has a Mach number of 6 and unit Reynolds number is 7.65 × 106/m. It is found that discrete film cooling can provide excellent thermal protection performance on the rudder shaft by consuming a coolant of 1.41 × 10−4 kg/s. For vertically-injected coolant, thermal protection performance deteriorates as the cooling holes are placed further upstream of the rudder shaft and the distribution of coolant alters qualitatively from a concentrated pattern to a segregated one due to the lower local blowing ratio. If the location of cooling holes is fixed, as the injection angle of coolant decreases, the impingement point of the cooling jet changes from the bottom of air fin to the frontal surface of rudder shaft, and more coolant is attached to the flat plate at the gap bottom.

Additional information

Funding

The authors gratefully acknowledge the funding from National Natural Science Foundation of China (52106050), Natural Science Foundation of Shanghai (21ZR1431800), Shanghai Science and Technology Commission Young Talent Sailing Program (20YF1419100) and Shanghai Aerospace Science and Technology Innovation Foundation. The authors would also like to thank Prof. Hua Ouyang and Prof. Zhaohui Du at Shanghai Jiao Tong University for their kind support and help.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.