Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 5
290
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical study of discrete film cooling near the rudder shaft of a hypersonic air fin model

, ORCID Icon, &
Pages 679-701 | Received 04 Oct 2022, Accepted 09 Mar 2023, Published online: 03 Apr 2023

References

  • Y. Zhu, W. Peng, R. Xu and P. Jiang, “Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles,” Chin. J. Aeronaut, vol. 31, no. 10, pp. 1929–1953, 2018. DOI: 10.1016/j.cja.2018.06.011.
  • F. Pish, T. D. Manh, M. B. Gerdroodbary, N. D. Nam, R. Moradi and H. Babazadeh, “Computational study of the cavity flow over sharp nose cone in supersonic flow,” Int. J. Mod. Phys. C, vol. 31, no. 06, pp. 2050079, 2020. DOI: 10.1142/S0129183120500795.
  • H. Babinsky and J. K. Harvey, Shock Wave-Boundary-Layer Interactions. Cambs, The United Kingdom of Great Britain and Northern Ireland: CUP, 2011.
  • N. Wu, H. Kang and J. Luo, “Experimental study on fine thermal measurement of high-speed aircraft wing rudder gapin shock wave tunnel,” Kongqi Donglixue Xuebao/Acta Aerodynamica Sin., vol. 37, no. 1, pp. 133–139, 2019. DOI: 10.7638/kqdlxxb-2018.0156.
  • A. G. Panaras, “Review of the physics of swept-shock/boundary layer interactions,” Prog. Aerosp. Sci., vol. 32, no. 2–3, pp. 173–244, 1996. DOI: 10.1016/0376-0421(95)00005-4.
  • O. R. Tutty, G. T. Roberts and P. H. Schuricht, “High-speed laminar flow past a fin–body junction,” J. Fluid Mech., vol. 737, pp. 19–55, 2013. DOI: 10.1017/jfm.2013.541.
  • P. Schuricht and G. Roberts, "Hypersonic interference heating induced by a blunt fin," in 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 1998, p. 1579.
  • S. Aso, S. Maekawa and M. Hayashi, “Aerodynamic heating in three-dimensional shock wave turbulent boundary layer interaction induced by sweptback sharp fins in hypersonic flows,” in International Pacific Air and Space Technology Conference and 29th Aircraft Symposium Proceedings, 1991: Publ by SAE, pp. 591–598.
  • J. B. Middlebrooks, et al., "Design of a hypersonic boundary layer transition control experiment utilizing a swept fin cone geometry in mach 6 flow," in AIAA Scitech 2021 Forum, 2021.
  • Y. Lee, “Heat transfer measurements in swept shock wave/turbulent boundary-layer interactions,” Ph.D. dissertation. Dept. PSU, Ann Arbor, MI, 1992.
  • F. Zhang, S. Yi, X. Xu, H. Niu and X. Lu, “A swept fin-induced flow field with different height mounting gaps,” Chin. J. Aeronaut., vol. 34, no. 1, pp. 148–162, 2021. DOI: 10.1016/j.cja.2020.09.050.
  • Y. Zhuang and X. Lu, “Quasi-periodic aerodynamic heating in blunt-fin induced shock wave/boundary layer interaction,” Proc. Eng., vol. 126, pp. 134–138, 2015. DOI: 10.1016/j.proeng.2015.11.195.
  • M. Lin, F. Yang and C. Wang, “Numerical investigation on the generation mechanism of aero-heating of rudder shaft from three-dimensional flow separation and vortices,” AIP Adv., vol. 12, no. 4, pp. 045228, 2022. DOI: 10.1063/5.0088508.
  • J. Tan, X. Sun, F. Liu, H. Yang and Z. Chen, “Numerical simulation of aerodynamic heating environment of a hypersonic plate/rudder configuration,” Acta Aerodynamica Sin., vol. 37, no. 1, pp. 153, 2019-02-25 2019. DOI: 10.7638/kqdlxxb-2018.0234.
  • Q. Li, L. Nie, K. Zhang, Y. Li, S. Chen and G. Zhu, “Experimental investigation on aero-heating of rudder shaft within laminar/turbulent hypersonic boundary layers,” Chin. J. Aeronaut, vol. 32, no. 5, pp. 1215–1221, 2019. DOI: 10.1016/j.cja.2019.01.027.
  • O. Uyanna and H. Najafi, “Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects,” Acta Astronaut., vol. 176, pp. 341–356, 2020. DOI: 10.1016/j.actaastro.2020.06.047.
  • R. J. Goldstein, “Film cooling,” in Advanced in Heat Transfer, vol. 7, San Diego, CA: Academic Press, 1971, pp. 321–379. DOI: 10.1016/S0065-2717(08)70020-0.
  • E. Eckert, V. Eriksen, R. Goldstein and J. Ramsey, “Film cooling following injection through inclined circular tubes,” ntrs.nasa.gov, 1969.
  • P. M. Ligrani, C. Saumweber, A. Schulz and S. Wittig, “Shock wave–film cooling interactions in transonic flows,” J. Turbomach., vol. 123, no. 4, pp. 788–797, 2001. DOI: 10.1115/1.1397305.
  • J. Mitchell and J. Neal, “Space storable regenerative cooling investigation,” in 5th Propulsion Joint Specialist, p. 509, 1968.
  • R. Pauckert, “Space storable regenerative cooling investigation,” Interim report, Jul.–Dec. 1967, New York, NY: AIAA, 1968.
  • Y.-D. Kang and B. Sun, “Numerical simulation of liquid rocket engine thrust chamber regenerative cooling,” J. Thermophys. Heat Trans., vol. 25, no. 1, pp. 155–164, 2011. DOI: 10.2514/1.47701.
  • L. W. Woodruff and G. C. Lorenz, “Hypersonic turbulent transpiration cooling including downstream effects,” AIAA J., vol. 4, no. 6, pp. 969–975, 1966. DOI: 10.2514/3.3589.
  • J. Librizzi and R. J. Cresci, “Transpiration cooling of a turbulent boundary layer in an axisymmetric nozzle,” AIAA J., vol. 2, no. 4, pp. 617–624, 1964. DOI: 10.2514/3.2397.
  • T. Langener, J. V. Wolfersdorf and J. Steelant, “Experimental investigations on transpiration cooling for scramjet applications using different coolants,” AIAA J., vol. 49, no. 7, pp. 1409–1419, 2011. DOI: 10.2514/1.J050698.
  • D. G. Bogard and K. A. Thole, “Gas turbine film cooling,” J. Propul. Power, vol. 22, no. 2, pp. 249–270, 2006. DOI: 10.2514/1.18034.
  • R. Goldstein, E. Eckert and F. Burggraf, “Effects of hole geometry and density on three-dimensional film cooling,” Int. J. Heat Mass Transf., vol. 17, no. 5, pp. 595–607, 1974. DOI: 10.1016/0017-9310(74)90007-6.
  • R. J. Goldstein, E. R. G. Eckert, H. D. Chiang and E. Elovic, “Effect of surface roughness on film cooling performance,” J. Eng. Gas Turbine Power, vol. 107, no. 1, pp. 111–116, 1985. DOI: 10.1115/1.3239669.
  • S. Ito, R. J. Goldstein and E. R. G. Eckert, “Film cooling of a gas turbine blade,” J. Eng. Power, vol. 100, no. 3, pp. 476–481, 1978. DOI: 10.1115/1.3446382.
  • S. Baldauf, M. Scheurlen, A. Schulz and S. Wittig, "Correlation of film cooling effectiveness from thermographic measurements at engine like conditions," in ASME Turbo Expo 2002: Power for Land, Sea, and Air, 2002. vol. 3: Turbo Expo 2002, arts A and B, pp. 149–162. DOI: 10.1115/gt2002-30180.
  • R. C. Foster and A. Haji-Sheikh, “An experimental investigation of boundary layer and heat transfer in the region of separated flow downstream of normal injection slots,” J. Heat Transfer, vol. 97, no. 2, pp. 260–266, 1975. DOI: 10.1115/1.3450351.
  • K.-D. Lee, S.-M. Kim and K.-Y. Kim, “Multi-objective optimization of a row of film cooling holes using an evolutionary algorithm and surrogate modeling,” Numer. Heat Transfer A-Appl., vol. 63, no. 8, pp. 623–641, 2013. DOI: 10.1080/10407782.2013.751316.
  • G. Zhang, J. Liu, B. Sundén and G. Xie, “On the improvement of film cooling performance using tree-shaped network holes: A comparative study,” Numer. Heat Transfer A-Appl., vol. 74, no. 4, pp. 1121–1138, 2018. DOI: 10.1080/10407782.2018.1507886.
  • S. Khajehhasani and B. A. Jubran, “Numerical assessment of the film cooling through novel sister-shaped single-hole schemes,” Numer. Heat Transfer A-Appl., vol. 67, no. 4, pp. 414–435, 2015. DOI: 10.1080/10407782.2014.937257.
  • S. Tamang, et al., “Numerical investigation of adiabatic film cooling effectiveness through compound angle variations,” Numer. Heat Transfer A-Appl., vol. 78, no. 10, pp. 595–618, 2020. DOI: 10.1080/10407782.2020.1803600.
  • R. Zhu, T. W. Simon and G. Xie, “Influence on film cooling effectiveness of novel holes based on cylindrical configurations,” Numer. Heat Transfer A-Appl., vol. 75, no. 7, pp. 469–488, 2019. DOI: 10.1080/10407782.2019.1606629.
  • J. M. Modlin and G. T. Colwell, “Surface cooling of scramjet engine inlets using heat pipe, transpiration, and film cooling,” J. Thermophys. Heat Trans., vol. 6, no. 3, pp. 500–504, 1992. DOI: 10.2514/3.388.
  • Y. Tsujikawa and G. Northam, “Effects of hydrogen active cooling on scramjet engine performance,” Int. J. Hydrogen Energy, vol. 21, no. 4, pp. 299–304, 1996. DOI: 10.1016/0360-3199(95)00077-1.
  • K. Fujiwara, R. Sriram, K. Kontis and T. Ideta, “Review on film cooling in high-speed flows,” in 31st International Symposium on Shock Waves 2. Cham: Springer International Publishing, 2019, pp. 939–946.
  • K. Heufer and H. Olivier, “Experimental and numerical study of cooling gas injection in laminar supersonic flow,” Aiaa J,. vol. 46, no. 11, pp. 2741–2751, 2008. DOI: 10.2514/1.34218.
  • M. Hombsch and H. Olivier, “Film cooling in laminar and turbulent supersonic flows,” J Spacecraft Rockets, vol. 50, no. 4, pp. 742–753, 2013. DOI: 10.2514/1.A32346.
  • A. Gülhan and S. Braun, “An experimental study on the efficiency of transpiration cooling in laminar and turbulent hypersonic flows,” Exp. Fluids, vol. 50, no. 3, pp. 509–525, 2011. DOI: 10.1007/s00348-010-0945-6.
  • H. S. Ifti, et al., “Laminar transpiration cooling experiments in hypersonic flow,” Exp. Fluids, vol. 63, no. 6, pp. 102, 2022. DOI: 10.1007/s00348-022-03446-1.
  • M. A. Keller, M. J. Kloker and H. Olivier, “Influence of cooling-gas properties on film-cooling effectiveness in supersonic flow,” J. Spacecraft Rockets, vol. 52, no. 5, pp. 1443–1455, 2015. DOI: 10.2514/1.A33203.
  • W. Peng and P. Jiang, “Influence of shock waves on supersonic film cooling,” J. Spacecraft Rockets, vol. 46, no. 1, pp. 67–73, 2009. DOI: 10.2514/1.38458.
  • N. Sahoo, V. Kulkarni, S. Saravanan, G. Jagadeesh and K. Reddy, “Film cooling effectiveness on a large angle blunt cone flying at hypersonic speed,” Phys. Fluids, vol. 17, no. 3, pp. 036102, 2005. DOI: 10.1063/1.1862261.
  • X. Zhao, S. Yi, Q. Mi, H. Ding and F. Zhang, “Drag reduction of a hypersonic cone with supersonic cooling film,” J. Thermophys. Heat Trans, vol. 36, no. 1, pp. 1–5, 2022. DOI: 10.2514/1.T6321.
  • M. Barzegar Gerdroodbary, “3 - Fluidic techniques: Opposing (counterflow) jets,” in Aerodynamic Heating in Supersonic and Hypersonic Flows, M. Barzegar Gerdroodbary Ed. Amsterdam, Netherlands: Elsevier, 2023, pp. 109–160.
  • T. Imoto, H. Okabe and Y. Tani, "Enhancement of aerodynamic heating reduction in high enthalpy flows with opposing jet," Presented at the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011.
  • M. B. Gerdroodbary, M. Imani and D. Ganji, “Investigation of film cooling on nose cone by a forward facing array of micro-jets in hypersonic flow,” Int. Commun. Heat Mass, vol. 64, pp. 42–49, 2015. DOI: 10.1016/j.icheatmasstransfer.2015.02.015.
  • X. Yang, K. Badcock, B. Richards and G. Barakos, “Numerical simulation of film Cooling in hypersonic flows," in 36th AIAA Thermophysics Conference, 2003. p. 3631.
  • H. S. Ifti, T. Hermann, M. McGilvray and J. Merrifield, “Numerical simulation of transpiration cooling in a laminar hypersonic boundary layer,” J. Spacecraft Rockets, vol. 59, no. 5, pp. 1726–1735, 2022. DOI: 10.2514/1.A35325.
  • Y. Zhao, S. Yi, L. Tian, L. He and Z. Cheng, “The fractal measurement of experimental images of supersonic turbulent mixing layer,” Sci. China Ser. G-Phys. Mech. Astron., vol. 51, no. 8, pp. 1134–1143, 2008. DOI: 10.1007/s11433-008-0097-3.
  • E. Lutum and B. V. Johnson, “Influence of the hole length-to-diameter ratio on film cooling with cylindrical holes,” J. Turbomach., vol. 121, no. 2, pp. 209–216, 1999. DOI: 10.1115/1.2841303.
  • H. Ma, Q. Zhang, L. He, Z. Wang and L. Wang, “Cooling injection effect on a transonic squealer tip—part II: Analysis of aerothermal interaction physics,” J. Eng. Gas Turbines Power, vol. 139, no. 5, pp. 1–5, 2017. DOI: 10.1115/1.4035200.
  • C. E. Ayoubi, W. Ghaly and I. Hassan, “Optimization of film cooling holes on the suction surface of a high pressure turbine blade,” in ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, 2012 in vol. 4: Heat Transfer, Parts A and B, pp. 1683–1693. DOI: 10.1115/gt2012-69773.
  • C. J. Roy and F. G. Blottner, “Review and assessment of turbulence models for hypersonic flows,” Prog. Aerosp. Sci., vol. 42, no. 7–8, pp. 469–530, 2006. DOI: 10.1016/j.paerosci.2006.12.002.
  • B. Sen, D. L. Schmidt and D. G. Bogard, “Film cooling with compound angle holes: Heat transfer,” J. Turbomach., vol. 118, no. 4, pp. 800–806, 1996. DOI: 10.1115/1.2840937.
  • J. Fu, S. H. Yi, X.-H. Wang, L. He and Y. Ge, “Experimental study on supersonic film cooling on the surface of a blunt body in hypersonic flow," Chin. Phys. B, vol. 23, no. 10, pp. 1–8, 2014. DOI: 10.1088/1674-1056/23/10/104702.
  • K. Hayashi, S. Aso and Y. Tani, “Experimental study on thermal protection system by opposing jet in supersonic flow,” J. Spacecraft Rockets, vol. 43, no. 1, pp. 233–235, 2006. DOI: 10.2514/1.15332.
  • K. Hayashi and S. Aso, "Effect of pressure ratio on aerodynamic heating reduction due to opposing jet," Presented at the 36th AIAA Thermophysics Conference, 2003.
  • S. Aso, et al., "Experimental and computational study on reduction of aerodynamic heating load by film cooling in hypersonic flows," Presented at the 35th Aerospace Sciences Meeting and Exhibit, 1997.
  • F. Pish, R. Moradi, A. Edalatpour and M. Barzegar Gerdroodbary, “The effect of coolant injection from the tip of spike on aerodynamic heating of nose cone at supersonic flow,” Acta Astronaut., vol. 154, pp. 52–60, 2019. DOI: 10.1016/j.actaastro.2018.10.021.
  • F. M. E. Observation, "Blocking the Miyako Strait airspace: Japan’s 03 anti-aircraft missile system," Sohu, China. [Online]. Available: https://www.sohu.com/a/406307597_120520226?_trans_=000014_bdss_dklzxbpcgp3p: Cp=. Accessed: July 7, 2020.
  • L. Nie, Y. Li, Y. Liu, Y. Yuan, G. Liu and Y. Zhuo, “Effect of thermal protection ring on flow and aeroheating of rudder shaft,” Phys. Gases, vol. 7, no. 04, pp. 77–82, 2022. DOI: 10.19527/j.cnki.2096-1642.0933.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.