514
Views
1
CrossRef citations to date
0
Altmetric
Review Article

A Review on Thiazole Based Colorimetric and Fluorimetric Chemosensors for the Detection of Heavy Metal Ions

, & ORCID Icon
Published online: 08 Apr 2023
 

Abstract

Thiazole and its derivatives play an important role in biological and non-biological fields due to several structural and electronic behaviors associated with it. Thiazole derivatives act as chemosensors because they formed metal complexes upon interacting with various heavy metal ions like Cd2+, Co2+, Cr3+, Fe3+, Ag+, Al3+, Cu2+, Pd2+, Hg2+, Ni2+, Ga3+, In3+, Sn4+, Pb2+, Zn2+ as well as other cations. These metal ions are of prime importance from the environmental point of view with high. This review article focuses on the thiazole-based colorimetric as well as fluorometric sensor for the recognition of different heavy metal cations in various specimens like agricultural, biological, and environmental. It also summarizes the binding stoichiometry, detection limit, pH, structure, and practical application of the reported thiazole-based chemosensors. Further, the sensing performances, have been discussed and compared with some reported organic sensors.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Funding

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the General Research Funding program grant code (NU/DRP/SERC/12/4).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 451.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.