522
Views
1
CrossRef citations to date
0
Altmetric
Review Article

A Review on Thiazole Based Colorimetric and Fluorimetric Chemosensors for the Detection of Heavy Metal Ions

, & ORCID Icon

References

  • Wani, A. L.; Ara, A.; Usmani, J. A. Lead Toxicity: A Review. Interdiscip. Toxicol. 2015, 8, 55–64. DOI: 10.1515/intox-2015-0009.
  • Kukongviriyapan, U.; Apaijit, K.; Kukongviriyapan, V. Oxidative Stress and Cardiovascular Dysfunction Associated with Cadmium Exposure: Beneficial Effects of Curcumin and Tetrahydrocurcumin. Tohoku J. Exp. Med. 2016, 239, 25–38. DOI: 10.1620/tjem.239.25.
  • Igiri, B. E.; Okoduwa, S. I. R.; Idoko, G. O.; Akabuogu, E. P.; Adeyi, A. O.; Ejiogu, I. K. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. J. Toxicol. 2018, 2018, 2568038. DOI: 10.1155/2018/2568038.
  • Vardhan, K. H.; Kumar, P. S.; Panda, R. C. A Review on Heavy Metal Pollution, Toxicity and Remedial Measures: Current Trends and Future Perspectives. J. Mol. Liq. 2019, 290, 111197.
  • Tchounwou, P. B.; Yedjou, C. G.; Patlolla, A. K.; Sutton, D. J. Heavy Metal Toxicity and the Environment. EXS 2012, 101, 133–164. DOI: 10.1007/978-3-7643-8340-4_6.
  • Wu, X.; Cobbina, S. J.; Mao, G.; Xu, H.; Zhang, Z.; Yang, L. A Review of Toxicity and Mechanisms of Individual and Mixtures of Heavy Metals in the Environment. Environ. Sci. Pollut. Res. Int. 2016, 23, 8244–8259. DOI: 10.1007/s11356-016-6333-x.
  • Hu, Q.; Yang, G.; Zhao, Y.; Yin, J. Determination of Copper, Nickel, Cobalt, Silver, Lead, Cadmium, and Mercury Ions in Water by Solid-Phase Extraction and the RP-HPLC with UV-Vis Detection. Anal. Bioanal. Chem. 2003, 2003, 375, 831–835. DOI: 10.1007/s00216-003-1828-y.
  • Bi, J.; Li, T.; Ren, H.; Ling, R.; Wu, Z.; Qin, W. Capillary Electrophoretic Determination of Heavy-Metal Ions Using 11-Mercaptoundecanoic Acid and 6-Mercapto-1-Hexanol co-Functionalized Gold Nanoparticle as Colorimetric Probe. J. Chromatogr. A 2019, 1594, 208–215. DOI: 10.1016/j.chroma.2019.02.010.
  • Young, E.; Tarawou, T. Determination of Metals in Pepper by Flame Atomic Absorption Spectroscopy. Int. J. Bio. Chem. Sci. 2015, 8, 2891. DOI: 10.4314/ijbcs.v8i6.45.
  • Aguirre, M. Á.; Canals, A.; López-García, I.; Hernández-Córdoba, M. Determination of Cadmium in Used Engine Oil, Gasoline and Diesel by Electrothermal Atomic Absorption Spectrometry Using Magnetic Ionic Liquid-Based Dispersive Liquid-Liquid Microextraction. Talanta 2020, 220, 121395. DOI: 10.1016/j.talanta.2020.121395.
  • Lu, Q.; Yang, S.; Sun, D.; Zheng, J.; Li, Y.; Yu, J.; Su, M. Direct Determination of Cu by Liquid Cathode Glow Discharge-Atomic Emission Spectrometry. Spectrochim. Acta Part B at. Spectrosc. 2016, 125, 136–139. DOI: 10.1016/j.sab.2016.09.019.
  • Sitko, R.; Janik, P.; Zawisza, B.; Talik, E.; Margui, E.; Queralt, I. Green Approach for Ultratrace Determination of Divalent Metal Ions and Arsenic Species Using Total-Reflection X-Ray Fluorescence Spectrometry and Mercapto-Modified Graphene Oxide Nanosheets as a Novel Adsorbent. Anal. Chem. 2015, 87, 3535–3542. DOI: 10.1021/ACS.ANALCHEM.5B00283/SUPPL_FILE/AC5B00283_SI_001.PDF.
  • Dressler, V. L.; Pozebon, D.; Curtius, A. J. Determination of Heavy Metals by Inductively Coupled Plasma Mass Spectrometry after on-Line Separation and Preconcentration. Spectrochim. Acta Part B at. Spectrosc. 1998, 53, 1527–1539. DOI: 10.1016/S0584-8547(98)00180-3.
  • Al-Saidi, H. M.; Khan, S. A Review on Organic Fluorimetric and Colorimetric Chemosensors for the Detection of Ag(I) Ions. Crit. Rev. Anal. Chem. 2022, 52, 1–27. DOI: 10.1080/10408347.2022.2133561.
  • Al-Saidi, H. M.; Khan, S. Recent Advances in Thiourea Based Colorimetric and Fluorescent Chemosensors for Detection of Anions and Neutral Analytes: A Review. Crit. Rev. Anal. Chem.. 2022, 52, 1–17. 10.1080/10408347.2022.2063017. DOI: 10.1080/10408347.2022.2063017.
  • Mohammad Abu-Taweel, G.; Ibrahim, M. M.; Khan, S.; Al-Saidi, H. M.; Alshamrani, M.; Alhumaydhi, F. A.; Alharthi, S. S. Medicinal Importance and Chemosensing Applications of Pyridine Derivatives: A Review. Crit. Rev. Anal. Chem. 2022, 52, 1–18. DOI: 10.1080/10408347.2022.2089839.
  • Khan, S.; Chen, X.; Almahri, A.; Allehyani, E. S.; Alhumaydhi, F. A.; Ibrahim, M. M.; Ali, S. Recent Developments in Fluorescent and Colorimetric Chemosensors Based on Schiff Bases for Metallic Cations Detection: A Review. J. Environ. Chem. Eng. 2021, 9, 106381. DOI: 10.1016/j.jece.2021.106381.
  • Nural, Y.; Keleş, E.; Aydıner, B.; Seferoğlu, N.; Atabey, H.; Seferoğlu, Z. New Naphthoquinone-Imidazole Hybrids: Synthesis, Anion Recognition Properties, DFT Studies and Acid Dissociation Constants. J. Mol. Liq. 2021, 327, 114855. DOI: 10.1016/j.molliq.2020.114855.
  • Keleş, E.; Aydıner, B.; Nural, Y.; Seferoğlu, N.; Şahin, E.; Seferoğlu, Z. Cover Feature: A New Mechanism for Selective Recognition of Cyanide in Organic and Aqueous Solution (Eur. J. Org. Chem. 30/2020). Eur. J. Org. Chem. 2020, 2020, 2020, 4640–4640. DOI: 10.1002/ejoc.202001038.
  • Anbu, S.; Paul, A.; Surendranath, K.; Solaiman, N. S.; Pombeiro, A. J. L. A Benzimidazole-Based New Fluorogenic Differential/Sequential Chemosensor for Cu2+, Zn2+, CN-, P2O74-, DNA, Its Live-Cell Imaging and Pyrosequencing Applications. Sensors Actuators B Chem. 2021, 337, 129785. DOI: 10.1016/j.snb.2021.129785.
  • Janzen, M. C.; Ponder, J. B.; Bailey, D. P.; Ingison, C. K.; Suslick, K. S. Colorimetric Sensor Arrays for Volatile Organic Compounds. Anal. Chem. 2006, 78, 3591–3600. DOI: 10.1021/ac052111s.
  • Kaur, B.; Kaur, N.; Kumar, S. Colorimetric Metal Ion Sensors – a Comprehensive Review of the Years 2011–2016. Coord. Chem. Rev. 2018, 358, 13–69. DOI: 10.1016/j.ccr.2017.12.002.
  • Sahoo, S. K. Fluorescent Chemosensors Containing Redox-Active Ferrocene: A Review. Dalton Trans. 2021, 50, 11681–11700. DOI: 10.1039/d1dt02077c.
  • Sahoo, S. K. Chromo-Fluorogenic Sensing Using Vitamin B6 Cofactors and Their Derivatives: A Review. New J. Chem. 2021, 45, 8874–8897. DOI: 10.1039/D1NJ01008E.
  • Hamilton, G. R. C.; Sahoo, S. K.; Kamila, S.; Singh, N.; Kaur, N.; Hyland, B. W.; Callan, J. F. Optical Probes for the Detection of Protons, and Alkali and Alkaline Earth Metal Cations. Chem. Soc. Rev. 2015, 44, 4415–4432. DOI: 10.1039/c4cs00365a.
  • Mohanty, P.; Behura, R.; Bhardwaj, V.; Dash, P. P.; Sahoo, S. K.; Jali, B. R. Recent Advancement on Chromo-Fluorogenic Sensing of Aluminum(III) with Schiff Bases, Trends. Environ. Anal. Chem. 2022, 34, e00166. DOI: 10.1016/j.teac.2022.e00166.
  • Sahoo, S. K.; Sharma, D.; Ber, R. K.; Crisponi, G.; Callan, J. F. Iron(III) Selective Molecular and Supramolecular Fluorescent Probes. Chem. Soc. Rev. 2012, 41, 7195–7227. DOI: 10.1039/c2cs35152h.
  • Mahajan, D.; Khairnar, N.; Bondhopadhyay, B.; Sahoo, S. K.; Basu, A.; Singh, J.; Singh, N.; Bendre, R.; Kuwar, A. A Highly Selective Fluorescent ‘Turn-On’ Chemosensor for Hg2+ Based on a Phthalazin-Hydrazone Derivative and Its Application in Human Cervical Cancer Cell Imaging. New J. Chem. 2015, 39, 3071–3076. DOI: 10.1039/C4NJ02149E.
  • Anand, T.; Kumar, A. S. K.; Sahoo, S. K. A Novel Schiff Base Derivative of Pyridoxal for the Optical Sensing of Zn2+ and Cysteine. Photochem. Photobiol. Sci. 2018, 17, 414–422. DOI: 10.1039/c7pp00391a.
  • Alrooqi, M.; Khan, S.; Alhumaydhi, F. A.; Asiri, S. A..; Alshamrani, M.; Mashraqi, M. M.; Alzamami, A.; Alshahrani, A. M.; Aldahish, A. A Therapeutic Journey of Pyridine-Based Heterocyclic Compounds as Potent Anticancer Agents: A Review (from 2017 to 2021). ACAMC 2022, 22, 2775–2787. DOI: 10.2174/1871520622666220324102849.
  • Khan, S.; Alhumaydhi, F. A.; Ibrahim, M. M.; Alqahtani, A.; Alshamrani, M.; Alruwaili, A. S.; Hassanian, A..; Khan, S. Recent Advances and Therapeutic Journey of Schiff Base Complexes with Selected Metals (Pt, Pd, Ag, Au) as Potent Anticancer Agents: A Review. ACAMC 2022, 22, 3086–3096. DOI: 10.2174/1871520622666220511125600.
  • Pathania, S.; Narang, R. K.; Rawal, R. K. Role of Sulphur-Heterocycles in Medicinal Chemistry: An Update. Eur. J. Med. Chem. 2019, 180, 486–508. DOI: 10.1016/j.ejmech.2019.07.043.
  • Petrou, A.; Fesatidou, M.; Geronikaki, A. Thiazole Ring—a Biologically Active Scaffold. Mol 2021, 26, 3166. DOI: 10.3390/molecules26113166.
  • Helal, A.; Rashid, M. H. O.; Choi, C. H.; Kim, H. S. New Regioisomeric Naphthol-Substituted Thiazole Based Ratiometric Fluorescence Sensor for Zn2+ with a Remarkable Red Shift in Emission Spectra. Tetrahedron 2012, 68, 647–653. DOI: 10.1016/j.tet.2011.10.106.
  • Aydin, D.; Karuk Elmas, S. N.; Savran, T.; Arslan, F. N.; Sadi, G.; Yilmaz, I. An Ultrasensitive ″off–on″ Fluorogenic Sensor Based on Thiazole Derivative for Zn2+: Food Supplement, Water and Bio–Imaging Applications. J. Photochem. Photobiol. A Chem. 2021, 419, 113459. DOI: 10.1016/j.jphotochem.2021.113459.
  • Jung, J. Y.; Han, S. J.; Chun, J.; Lee, C.; Yoon, J. New Thiazolothiazole Derivatives as Fluorescent Chemosensors for Cr3+ and Al3+. Dye Pigment 2012, 94, 423–426. DOI: 10.1016/j.dyepig.2012.02.005.
  • Aydin, D.; Karakilic, E.; Karakurt, S.; Baran, A. Thiazolidine Based Fluorescent Chemosensors for Aluminum Ions and Their Applications in Biological Imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 238, 118431. DOI: 10.1016/j.saa.2020.118431.
  • Umabharathi, P. S.; Karpagam, S. Thiazole-Formulated Azomethine Compound for Three-Way Detection of Mercury Ions in Aqueous Media and Application in Living Cells. ACS Omega 2022, 7, 24638–24645. https://doi.org/10.1021/ACSOMEGA.2C02473/ASSET/IMAGES/LARGE/AO2C02473_0012.JPEG.
  • Mohammad Abu-Taweel, G.; Alharthi, S. S.; Al-Saidi, H. M.; Babalghith, A. O.; Ibrahim, M. M.; Khan, S. Heterocyclic Organic Compounds as a Fluorescent Chemosensor for Cell Imaging Applications: A Review. Crit. Rev. Anal. Chem. 2023, 53, 1–16. DOI: 10.1080/10408347.2023.2186695.
  • Gao, Z.; Liu, G. G.; Ye, H.; Rauschendorfer, R.; Tang, D.; Xia, X. Facile Colorimetric Detection of Silver Ions with Picomolar Sensitivity. Ana.l Chem. 2017, 89, 3622–3629. DOI: 10.1021/acs.analchem.6b05026.
  • Al-Saidi, H. M.; Khan, S. A Review on Organic Fluorimetric and Colorimetric Chemosensors for the Detection of Ag(I) Ions. Crit. Rev. Anal. Chem. 2022, 52,1–27. DOI: 10.1080/10408347.2022.2133561.
  • Wei, G.; Jiang, Y.; Wang, F. A Novel AIEE Polymer Sensor for Detection of Hg2+ and Ag + in Aqueous Solution. J. Photochem. Photobiol. A Chem. 2018, 358, 38–43. DOI: 10.1016/j.jphotochem.2018.03.006.
  • Li, N. N.; Bi, C. F.; Zhang, X.; Xu, C. G.; Bin Fan, C.; Gao, W. S.; Zong, Z. A.; Zuo, S. S.; Niu, C. F.; Fan, Y. H. A Bifunctional Probe Based on Naphthalene Derivative for Absorbance-Ratiometic Detection of Ag + and Fluorescence “Turn-on” Sensing of Zn2+ and Its Practical Application in Water Samples, Walnut and Living Cells. J. Photochem. Photobiol. A Chem. 2020, 390, 112299. DOI: 10.1016/j.jphotochem.2019.112299.
  • Chen, Z.; Zhou, H.; Gu, W.; Liu, T.; Xie, Z; Yang, L.; Ma, L. J..; 2019, A Medium-Controlled Fluorescent Enhancement Probe for Ag + and Cu2+ Derived from Pyrene-containing Schiff base. J. Photochem. Photobiol. A: Chem., 379, 5–10. https://www.sciencedirect.com/science/article/pii/S1010603019304915. (accessed March 13, 2021). DOI: 10.1016/j.jphotochem.2019.05.007.
  • Li, F.; Meng, F.; Wang, Y.; Zhu, C.; Cheng, Y. Polymer-Based Fluorescence Sensor Incorporating Thiazole Moiety for Direct and Visual Detection of Hg2+ and Ag+. Tetrahedron 2015, 71, 1700–1704. DOI: 10.1016/j.tet.2015.01.052.
  • Lin, D. S.; Lai, J. P.; Sun, H.; Yang, Z.; Zuo, Y. A Turn-on Fluorescein Spirolactam Derivative as a High Selective Fluorescence Probe for Detection of Silver Ion(i) in Water. Anal. Methods 2014, 6, 1517–1522. DOI: 10.1039/C3AY41852A.
  • Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and Its Importance for Human Health: An Integrative Review. J. Res. Med. Sci. 2013, 18, 144–157. DOI: 10.1016/j.foodpol.2013.06.008.
  • Fosmire, G. J. Zinc Toxicity. Am. J. Clin. Nutr. 1990, 51, 225–227. DOI: 10.1093/ajcn/51.2.225.
  • Yoon, S. A.; Lee, J.; Lee, M. H. A Ratiometric Fluorescent Probe for Zn2+ Based on Pyrene-Appended Naphthalimide-Dipicolylamine, Sensors. Actuators, B Chem. 2018, 258, 50–55. DOI: 10.1016/j.snb.2017.11.126.
  • Helal, A.; Kim, H. S. Thiazole-Based Chemosensor: synthesis and Ratiometric Fluorescence Sensing of Zinc. Tetrahedron Lett. 2009, 50, 5510–5515. DOI: 10.1016/j.tetlet.2009.07.078.
  • An, M.; Kim, B. Y.; Seo, H.; Helal, A.; Kim, H. S. Fluorescence Sensor for Sequential Detection of Zinc and Phosphate Ions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 169, 87–94. DOI: 10.1016/j.saa.2016.06.026.
  • Moradi, S. E.; Molavipordanjani, S.; Hosseinimehr, S. J.; Emami, S. Benzo[d]Imidazo[2,1-b]Thiazole-Based Fluorescent Sensor for Zn2+ Ion Detection. J. Photochem. Photobiol. A Chem. 2020, 389, 112184. DOI: 10.1016/j.jphotochem.2019.112184.
  • Uauy, R.; Olivares, M.; Gonzalez, M. Essentiality of Copper in Humans. Am. J. Clin. Nutr. 1998, 67, 952S–959S. DOI: 10.1093/ajcn/67.5.952S.
  • Pal, A. Copper toxicity induced hepatocerebral and neurodegenerative diseases: an urgent need for prognostic biomarkers. Neurotoxicology. 2014, 40, 97–101. DOI: https://doi.org/10.1016/j.neuro.2013.12.001
  • Helal, A.; Or Rashid, M. H.; Choi, C. H.; Kim, H. S. Chromogenic and Fluorogenic Sensing of Cu2+ Based on Coumarin. Tetrahedron 2011, 67, 2794–2802. DOI: 10.1016/j.tet.2011.01.093.
  • Razi, S. S.; Srivastava, P.; Ali, R.; Gupta, R. C.; Dwivedi, S. K.; Misra, A. A Coumarin-Derived Useful Scaffold Exhibiting Cu2+ Induced Fluorescence Quenching and Fluoride Sensing (on–off–on) via Copper Displacement Approach. Sensors Actuators B Chem. 2015, 209, 162–171. DOI: 10.1016/j.snb.2014.11.082.
  • Mahapatra, A. K.; Mondal, S.; Manna, S. K.; Maiti, K.; Maji, R.; Uddin, M. R.; Mandal, S.; Sarkar, D.; Mondal, T. K.; Maiti, D. K. A New Selective Chromogenic and Turn-on Fluorogenic Probe for Copper(II) in Solution and Vero Cells: recognition of Sulphide by [CuL]. Dalton Trans. 2015, 44, 6490–6501. DOI: 10.1039/c4dt03969f.
  • Seo, H.; An, M.; Kim, B. Y.; Choi, J. H.; Helal, A.; Kim, H. S. Highly Selective Fluorescent Probe for Sequential Recognition of Copper(II) and Iodide Ions. Tetrahedron 2017, 73, 4684–4691. DOI: 10.1016/j.tet.2017.06.034.
  • Kim, B. Y.; Pandith, A.; Cho, C. S.; Kim, H. S. Highly Selective Fluorescent Probe Based on 2-(2′-Dansylamidophenyl)-Thiazole for Sequential Sensing of Copper(II) and Iodide Ions. Bull. Korean Chem. Soc. 2019, 40, 163–168. DOI: 10.1002/bkcs.11663.
  • Mohammadi, A.; Ghasemi, Z. A Simple Pyrimidine Based Colorimetric and Fluorescent Chemosensor for Sequential Detection of Copper (II) and Cyanide Ions and Its Application in Real Samples. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 228, 117730. DOI: 10.1016/j.saa.2019.117730.
  • Nootem, J.; Daengngern, R.; Sattayanon, C.; Wattanathana, W.; Wannapaiboon, S.; Rashatasakhon, P.; Chansaenpak, K. The Synergy of CHEF and ICT toward Fluorescence ‘Turn-On’ Probes Based on Push-Pull Benzothiazoles for Selective Detection of Cu2+ in Acetonitrile/Water Mixture. J. Photochem. Photobiol. A Chem. 2021, 415, 113318. DOI: 10.1016/j.jphotochem.2021.113318.
  • Tchounwou, P. B.; Ayensu, W. K.; Ninashvili, N.; Sutton, D. Review: Environmental Exposure to Mercury and Its Toxicopathologic Implications for Public Health. Environ. Toxicol. 2003, 18, 149–175. DOI: 10.1002/tox.10116.
  • Bae, J. S.; Gwon, S. Y.; Son, Y. A.; Kim, S. H. A Benzothiazole-Based Semisquarylium Dye Suitable for Highly Selective Hg2+ Sensing in Aqueous Media. Dye Pigment. 2009, 83, 324–327. DOI: 10.1016/j.dyepig.2009.05.010.
  • Zareh Jonaghani, M.; Zali-Boeini, H. Highly Selective Fluorescent and Colorimetric Chemosensor for Detection of Hg2 + Ion in Aqueous Media. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 178, 66–70. DOI: 10.1016/j.saa.2017.01.065.
  • Gholami, M. D.; Manzhos, S.; Sonar, P.; Ayoko, G. A.; Izake, E. L. Dual Chemosensor for the Rapid Detection of Mercury(II) Pollution and Biothiols. Analyst 2019, 144, 4908–4916. DOI: 10.1039/c9an01055f.
  • Tekuri, V.; Sahoo, S. K.; Trivedi, D. R. Hg2+ Induced Hydrolysis of Thiazole Amine Based Schiff Base: Colorimetric and Fluorogenic Chemodosimeter for Hg2+ Ions in an Aqueous Medium. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 218, 19–26. DOI: 10.1016/j.saa.2019.03.106.
  • Rahimzadeh, M. R.; Rahimzadeh, M. R.; Kazemi, S.; Moghadamnia, A. A. Cadmium Toxicity and Treatment: An Update, Casp. J. Intern. Med. 2017, 8, 135. DOI: 10.22088/CJIM.8.3.135.
  • Quiroga-Campano, C.; Gómez-Machuca, H.; Moris, S.; Jara, P.; De la Fuente, J. R.; Pessoa-Mahana, H.; Jullian, C.; Saitz, C. Synthesis of Bifunctional Receptor for Fluoride and Cadmium Based on Calix[4]Arene with Thiourea Moieties. J. Mol. Struct. 2017, 1141, 133–141. DOI: 10.1016/j.molstruc.2017.03.089.
  • Lu, Z. N.; Wang, L.; Zhang, X.; Zhu, Z. J. A Selective Fluorescent Chemosensor for Cd2+ Based on 8-Hydroxylquinoline-Benzothiazole Conjugate and Imaging Application. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 213, 57–63. DOI: 10.1016/j.saa.2019.01.041.
  • Zhang, Z.; Yuan, S.; Wang, E. A Dual-Target Fluorescent Probe with Response-Time Dependent Selectivity for Cd2+ and Cu2+. J. Fluoresc. 2018, 28, 1115–1119. https://doi.org/10.1007/S10895-018-2274-8/METRICS.
  • Aksuner, N.; Henden, E.; Yilmaz, I.; Cukurovali, A. A Novel Optical Chemical Sensor for the Determination of Nickel(II) Based on Fluorescence Quenching of Newly Synthesized Thiazolo-Triazol Derivative and Application to Real Samples. Sensors Actuators B Chem. 2012, 166-167, 269–274. DOI: 10.1016/j.snb.2012.02.059.
  • Pothulapadu, C. A. S.; Jayaraj, A.; Swathi, N.; Priyanka, R. N.; Sivaraman, G. Novel Benzothiazole-Based Highly Selective Ratiometric Fluorescent Turn-On Sensors for Zn2 + and Colorimetric Chemosensors for Zn2+, Cu2+, and Ni2 + Ions. ACS Omega 2021, 6, 24473–24483. DOI: 10.1021/ACSOMEGA.1C02855/SUPPL_FILE/AO1C02855_SI_001.PDF.
  • Xie, P.; Zhu, Y.; Huang, X.; Gao, G.; Wei, F.; Guo, F.; Jiang, S.; Wang, C. A Novel Probe Based on Rhodamine 101 Spirolactam and 2-(2′-Hydroxy-5′-Methylphenyl)Benzothiazole Moieties for Three-in-One Detection of Paramagnetic Cu2+, Co2+ and Ni2+. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 222, 117171. DOI: 10.1016/j.saa.2019.117171.
  • Abebe, F. A.; Eribal, C. S.; Ramakrishna, G.; Sinn, E. A ‘Turn-On’ Fluorescent Sensor for the Selective Detection of Cobalt and Nickel Ions in Aqueous Media. Tetrahedron Lett. 2011, 52, 5554–5558. DOI: 10.1016/j.tetlet.2011.08.072.
  • Rahimi, M.; Amini, A.; Behmadi, H. Novel Symmetric Schiff-Base Benzobisthiazole-Salicylidene Derivative with Fluorescence Turn-on Behavior for Detecting Pb2+ Ion. J. Photochem. Photobiol. A Chem. 2020, 388, 112190. DOI: 10.1016/j.jphotochem.2019.112190.
  • Costa, M.; Klein, C. B. Toxicity and Carcinogenicity of Chromium Compounds in Humans. Crit. Rev. Toxicol. 2006, 36, 155–163. DOI: 10.1080/10408440500534032.
  • Saravana Mani, K.; Rajamanikandan, R.; Ravikumar, G.; Vijaya Pandiyan, B.; Kolandaivel, P.; Ilanchelian, M.; Rajendran, S. P. Highly Sensitive Coumarin-Pyrazolone Probe for the Detection of Cr3+ and the Application in Living Cells. ACS Omega 2018, 3, 17212–17219. DOI: 10.1021/acsomega.8b01907.
  • Lv, R. G.; Chen, S. W.; Gao, Y. A Selective Fluorescence Probe Based on Benzothiazole for the Detection of Cr3+, Heterocycl. Commun 2017, 23, 389–394. DOI: 10.1515/HC-2017-0120/DOWNLOADASSET/SUPPL/HC-2017-0120_SUPPL.DOC.
  • Zhang, D.; Jia, B.; Li, M.; Guo, J.; Wang, T.; Cao, C.; Wang, Y.; Liu, J. A Ratiometric Fluorescent Probe for Sensitive and Selective Detection of Chromium (VI) in Aqueous Solutions. Microchem. J. 2020, 159, 105337. DOI: 10.1016/j.microc.2020.105337.
  • Seenan, S.; Iyer, S. K. Colorimetric Metal Sensing of Fe3+ and Cr3+ and Photophysical and Electrochemical Studies Based on Benzo[4,5]Thiazolo[3,2- A[Pyrimidine-3-Carboxylate and Its Derivatives. J. Org. Chem. 2020, 85, 1871–1881. DOI: 10.1021/ACS.JOC.9B02297/SUPPL_FILE/JO9B02297_SI_001.PDF.
  • Khan, S.; Muhammad, M.; Algethami, J. S.; Al-Saidi, H. M.; Almahri, A.; Hassanian, A. A. Synthesis, Characterization and Applications of Schiff Base Chemosensor for Determination of Cr(III) Ions. J Fluoresc. 2022, 32, 1889–1898.). DOI: 10.1007/s10895-022-02990-7.
  • Aydin, D.; Karuk Elmas, S. N.; Savran, T.; Arslan, F. N.; Sadi, G.; Yilmaz, I. An Ultrasensitive ″off–on″ Fluorogenic Sensor Based on Thiazole Derivative for Zn2+: Food Supplement, Water and Bio–Imaging Applications. J. Photochem. Photobiol. A Chem. 2021, 419, 113459. DOI: 10.1016/j.jphotochem.2021.113459.
  • Aydin, D.; Gunay, I. B.; Alici, O. Highly Selective Thiazole-Appended “Switch off” Fluorogenic Sensor with a Detection Level of nM for Cu2+: DFT Calculations and Practically Applications. J. Lumin. 2022, 242, 118561. DOI: 10.1016/j.jlumin.2021.118561.
  • Momidi, B. K.; Tekuri, V.; Trivedi, D. R. Selective Detection of Mercury Ions Using Benzothiazole Based Colorimetric Chemosensor. Inorg. Chem. Commun. 2016, 74, 1–5. DOI: 10.1016/j.inoche.2016.10.017.
  • Helal, A.; Kim, H. G.; Ghosh, M. K.; Choi, C. H.; Kim, S. H.; Kim, H. S. New Regioisomeric Naphthol–Thiazole Based ‘Turn-On’ Fluorescent Chemosensor for Al3+. Tetrahedron 2013, 69, 9600–9608. DOI: 10.1016/j.tet.2013.09.038.
  • Xiao, N.; Xie, L.; Zhi, X.; Fang, C. J. A Naphthol-Based Highly Selective Fluorescence Turn-on and Reversible Sensor for Al(III) Ion. Inorg. Chem. Commun. 2018, 89, 13–17. DOI: 10.1016/j.inoche.2018.01.007.
  • Consty, Z. A.; Zhang, Y.; Xu, Y. A Simple Sensor Based on Imidazo[2,1-b]Thiazole for Recognition and Differentiation of Al3+, F − and PPi. J. Photochem. Photobiol. A Chem. 2020, 397, 112578. DOI: 10.1016/j.jphotochem.2020.112578.
  • Wang, H.; Xu, X.; Yin, J.; Zhang, Z.; Xue, L. A Highly Selective “Turn-On” Fluorescent Sensor for Aluminum Ion Detection in Aqueous Solution Based on Imidazo[2,1-b]Thiazole Schiff Base. ChemistrySelect 2021, 6, 6454–6459. DOI: 10.1002/slct.202101562.
  • She, M.; Yang, Z.; Yin, B.; Zhang, J.; Gu, J.; Yin, W.; Li, J.; Zhao, G.; Shi, Z. A Novel Rhodamine-Based Fluorescent and Colorimetric “off–on” Chemosensor and Investigation of the Recognizing Behavior towards Fe3+. Dye Pigment 2012, 92, 1337–1343. DOI: 10.1016/j.dyepig.2011.09.014.
  • Yang, M. Y.; Zhao, X. L.; Zheng, M. H.; Wang, Y.; Jin, J. Y. Fluorescent Sensing of Both Fe(III) and pH Based on 4-Phenyl-2-(2-Pyridyl)Thiazole and Construction of or Logic Function. J. Fluoresc. 2016, 26, 1653–1657. DOI: 10.1007/S10895-016-1855-7/METRICS.
  • Nandhini, T.; Kaleeswaran, P.; Pitchumani, K. A Highly Selective, Sensitive and “Turn-on” Fluorescent Sensor for the Paramagnetic Fe3+ Ion. Sensors Actuators B Chem. 2016, 230, 199–205. DOI: 10.1016/j.snb.2016.02.054.
  • Chen, H.; Bao, X.; Shu, H.; Zhou, B.; Ye, R.; Zhu, J. Synthesis and Evaluation of a Novel Rhodamine B-Based ‘off-On’ Fluorescent Chemosensor for the Selective Determination of Fe3+ Ions. Sensors Actuators B Chem. 2017, 242, 921–931. DOI: 10.1016/j.snb.2016.09.163.
  • Wang, Y.; Yang, M. Y.; Zheng, M. H.; Zhao, X. L.; Xie, Y. Z.; Jin, J. Y. 2-Pyridylthiazole Derivative as ICT-Based Ratiometric Fluorescent Sensor for Fe(III). Tetrahedron Lett. 2016, 57, 2399–2402. DOI: 10.1016/j.tetlet.2016.04.065.
  • Shyamsivappan, S.; Saravanan, A.; Vandana, N.; Suresh, T.; Suresh, S.; Nandhakumar, R.; Mohan, P. S. Novel Quinoline-Based Thiazole Derivatives for Selective Detection of Fe3+, Fe2+, and Cu2+ Ions. ACS Omega 2020, 5, 27245–27253. DOI: 10.1021/ACSOMEGA.0C03445/SUPPL_FILE/AO0C03445_SI_003.CIF.
  • Kim, B. Y.; Kim, H. S.; Helal, A. A Fluorescent Chemosensor for Sequential Recognition of Gallium and Hydrogen Sulfate Ions Based on a New Phenylthiazole Derivative. Sensors Actuators B Chem. 2015, 206, 430–434. DOI: 10.1016/j.snb.2014.09.071.
  • Lim, C.; An, M.; Seo, H.; Huh, J. H.; Pandith, A.; Helal, A.; Kim, H. S. Fluorescent Probe for Sequential Recognition of Ga3+ and Pyrophosphate Anions. Sensors Actuators B Chem. 2017, 241, 789–799. DOI: 10.1016/j.snb.2016.11.002.
  • Xu, Y.; Zhao, S.; Zhang, Y.; Wang, H.; Yang, X.; Pei, M.; Zhang, G. A Selective “Turn-on” Sensor for Recognizing In3+ and Zn2+ in Respective Systems Based on Imidazo[2,1-: B] Thiazole. Photochem. Photobiol. Sci. 2020, 19, 289–298. DOI: 10.1039/C9PP00408D/METRICS.
  • Xu, Y.; Yuan, S.; Zhang, Y.; Wang, H.; Yang, X.; Pei, M.; Zhang, G. A New Multifunctional Sensor for Sequential Recognizing of Zn2+ and PPi in Acetonitrile Solution and Detection of In3+ in DMF Solution. J. Photochem. Photobiol. A Chem. 2020, 392, 112348. DOI: 10.1016/j.jphotochem.2019.112348.
  • Li, B.; Shang, X.; Li, L.; Xu, Y.; Wang, H.; Yang, X.; Pei, M.; Zhang, R.; Zhang, G. A Fluorescence Probe Based on 6-Phenylimidazo[2,1-b]Thiazole and Salicylaldehyde for the Relay Discerning of In3+ and Cr3+. New J. Chem. 2020, 44, 951–957. DOI: 10.1039/C9NJ05722F.
  • Mahapatra, A. K.; Mondal, S.; Maiti, K.; Manna, S. K.; Maji, R.; Mandal, D.; Mandal, S.; Goswami, S.; Quah, C. K.; Fun, H. K. A Pyrene Thiazole Conjugate as a Ratiometric Chemosensor with High Selectivity and Sensitivity for Tin (Sn4+) and Its Application in Imaging Live Cells. RSC Adv. 2014, 4, 56605–56614. DOI: 10.1039/C4RA10540K.
  • Domingo, J. L. Reproductive and Developmental Toxicity of Aluminum: A Review. Neurotoxicol. Teratol. 1995, 17, 515–521. DOI: 10.1016/0892-0362(95)00002-9.
  • Alfrey, A. C. Aluminum Toxicity in Patients with Chronic Renal Failure. Ther. Drug Monit. 1993, 15, 593–597. DOI: 10.1097/00007691-199312000-00025.
  • Spinelli, J. J.; Demers, P. A.; Le, N. D.; Friesen, M. D.; Lorenzi, M. F.; Fang, R.; Gallagher, R. P. Cancer Risk in Aluminum Reduction Plant Workers (Canada). Cancer Causes Control 2006, 17, 939–948.) . DOI: 10.1007/s10552-006-0031-9.
  • Fonseca-Nunes, A.; Jakszyn, P.; Agudo, A. Iron and Cancer Risk-a Systematic Review and Meta-Analysis of the Epidemiological Evidence, Cancer. Cancer Epidemiol. Biomark. Prev. 2014, 23, 12–31. DOI: 10.1158/1055-9965.EPI-13-0733.
  • Jegier, J. A.; Gladfelter, W. L. The Use of Aluminum and Gallium Hydrides in Materials Science. Coord. Chem. Rev. 2000, 206-207, 631–650. DOI: 10.1016/S0010-8545(00)00300-3.
  • Tanaka, A.; Hirata, M.; Kiyohara, Y.; Nakano, M.; Omae, K.; Shiratani, M.; Koga, K. Review of Pulmonary Toxicity of Indium Compounds to Animals and Humans. Thin Solid Films 2010, 518, 2934–2936. DOI: 10.1016/j.tsf.2009.10.123.
  • Chen, Z. E.; Zhang, H.; Iqbal, Z. A New Thiosemicarbazone Fluorescent Probe Based on 9,9′-Bianthracene for Hg2+ and Ag+. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 215, 34–40. DOI: 10.1016/j.saa.2019.02.036.
  • Bhorge, Y. R.; Chou, T.-L.; Chen, Y.-Z.; Yen, Y.-P. New Coumarin-Based Dual Chromogenic Probe: Naked Eye Detection of Copper and Silver Ions. Sensors Actuators B Chem. 2015, 220, 1139–1144. DOI: 10.1016/j.snb.2015.06.059.
  • Bhuvanesh, N.; Suresh, S.; Prabhu, J.; Kannan, K.; Rajesh Kannan, V.; Nandhakumar, R. Ratiometric Fluorescent Chemosensor for Silver Ion and Its Bacterial Cell Imaging. Opt. Mater. (Amst.) 2018, 82, 123–129. DOI: 10.1016/j.optmat.2018.05.053.
  • Velmurugan, K.; Suresh, S.; Santhoshkumar, S.; Saranya, M.; Nandhakumar, R. A Simple Chalcone-Based Ratiometric Chemosensor for Silver Ion. Luminescence 2016, 31, 722–727. DOI: 10.1002/bio.3016.
  • Chen, C.; Liu, H.; Zhang, B.; Wang, Y.; Cai, K.; Tan, Y.; Gao, C.; Liu, H.; Tan, C.; Jiang, Y. A Simple Benzimidazole Quinoline-Conjugate Fluorescent Chemosensor for Highly Selective Detection of Ag+. Tetrahedron 2016, 72, 3980–3985. DOI: 10.1016/j.tet.2016.05.020.
  • Liu, J.; Wang, S.; Wang, X. A Novel Ratiometric Fluorescent Probe for Ag + Based on Arginine-Naphthalene Imide. J. Mater. Eng. Perform. 2020, 2020, 29, 5126–5131. DOI: 10.1007/s11665-020-05006-2.
  • Liu, C.; Huang, S.; Yao, H.; He, S.; Lu, Y.; Zhao, L.; Zeng, X. Preparation of Fluorescein-Based Chemosensors and Their Sensing Behaviors toward Silver Ions. RSC Adv. 2014, 4, 16109–16114. DOI: 10.1039/C3RA47392A.
  • Yan, J.; Fan, L.; Qin, J. C.; Li, C. R.; Yang, Z. Y. A Novel and Resumable Schiff-Base Fluorescent Chemosensor for Zn(II). Tetrahedron Lett. 2016, 57, 2910–2914. DOI: 10.1016/j.tetlet.2016.05.079.
  • Xiao, S.; Liu, Z.; Zhao, J.; Pei, M.; Zhang, G.; He, W. A Novel Fluorescent Sensor Based on Imidazo[1,2-a]Pyridine for Zn2+. RSC Adv. 2016, 6, 27119–27125. DOI: 10.1039/C6RA01800A.
  • Fan, L.; Qin, J. C.; Li, T. R.; Wang, B. D.; Yang, Z. Y. A Novel Rhodamine Chromone-Based “off-on” Chemosensor for the Differential Detection of Al(III) and Zn(II) in Aqueous Solutions. Sensors Actuators, B Chem. 2014, 203, 550–556. DOI: 10.1016/j.snb.2014.07.017.
  • Pandith, A.; Uddin, N.; Choi, C. H.; Kim, S. Highly Selective Imidazole-Appended 9,10-N,N′-Diaminomethylanthracene Fluorescent Probe for Switch-on Zn2+ Detection and Switch-off H2PO4− and CN − Detection in 80% Aqueous DMSO, and Applications to Sequential Logic Gate Operations. Sensors Actuators B Chem. 2017, 247, 840–849. DOI: 10.1016/j.snb.2017.03.112.
  • Yanfang, S.; Hualai, W.; Hui, B. A Coumarin-Based Turn-on Chemosensor for Selective Detection of Zn(II) and Application in Live Cell Imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 228, 117746. DOI: 10.1016/j.saa.2019.117746.
  • Sinha, S.; Mukherjee, T.; Mathew, J.; Mukhopadhyay, S. K.; Ghosh, S. Triazole-Based Zn2+-Specific Molecular Marker for Fluorescence Bioimaging. Anal. Chim. Acta 2014, 822, 60–68. DOI: 10.1016/j.aca.2014.03.002.
  • Tümay, S. O.; Okutan, E.; Sengul, I. F.; Özcan, E.; Kandemir, H.; Doruk, T.; Çetin, M.; Çoşut, B. Naked-Eye Fluorescent Sensor for Cu(II) Based on Indole Conjugate BODIPY Dye. Polyhedron 2016, 117, 161–171. DOI: 10.1016/j.poly.2016.05.056.
  • Liu, L.; Dan, F.; Liu, W.; Lu, X.; Han, Y.; Xiao, S.; Lan, H. A High-Contrast Colorimetric and Fluorescent Probe for Cu2+ Based on Benzimidazole-Quinoline. Sensors Actuators B Chem. 2017, 247, 445–450. DOI: 10.1016/j.snb.2017.03.069.
  • Srivastava, P.; Ali, R.; Razi, S. S.; Shahid, M.; Misra, A. Thiourea Based Molecular Dyad (ANTU): Fluorogenic Hg2+ Selective Chemodosimeter Exhibiting Blue-Green Fluorescence in Aqueous-Ethanol Environment. Sensors Actuators, B Chem. 2013, 181, 584–595. DOI: 10.1016/j.snb.2013.01.080.
  • Khan, T. K.; Ravikanth, M. 3-(Pyridine-4-Thione)BODIPY as a Chemodosimeter for Detection of Hg(II) Ions. Dye Pigment 2012, 95, 89–95. DOI: 10.1016/j.dyepig.2012.03.015.
  • Vengaian, K. M.; Britto, C. D.; Sekar, K.; Sivaraman, G.; Singaravadivel, S. Phenothiazine-Diaminomalenonitrile Based Colorimetric and Fluorescence “Turn-off-on” Sensing of Hg2+ and S2−. Sensors Actuators B Chem. 2016, 235, 232–240. DOI: 10.1016/j.snb.2016.04.180.
  • Ma, L. J.; Liu, J.; Deng, L.; Zhao, M.; Deng, Z.; Li, X.; Tang, J.; Yang, L. Selective and Sensitive Fluorescence-Shift Probes Based on Two Dansyl Groups for Mercury(II) Ion Detection. Photochem. Photobiol. Sci. 2014, 13, 1521–1528. DOI: 10.1039/c4pp00094c.
  • Wang, J.; Niu, Q.; Hu, T.; Li, T.; Wei, T. A New Phenothiazine-Based Sensor for Highly Selective, Ultrafast, Ratiometric Fluorescence and Colorimetric Sensing of Hg2+: Applications to Bioimaging in Living Cells and Test Strips. J. Photochem. Photobiol. A Chem. 2019, 384, 112036. DOI: 10.1016/j.jphotochem.2019.112036.
  • Rout, K.; Manna, A. K.; Sahu, M.; Patra, G. K. A Guanidine Based Bis Schiff Base Chemosensor for Colorimetric Detection of Hg(II) and Fluorescent Detection of Zn(II) Ions. Inorg. Chim. Acta 2019, 486, 733–741. DOI: 10.1016/j.ica.2018.11.021.
  • Manna, A. K.; Mondal, J.; Chandra, R.; Rout, K.; Patra, G. K. A Thio-Urea Based Chromogenic and Fluorogenic Chemosensor for Expeditious Detection of Cu2+, Hg2+ and Ag + Ions in Aqueous Medium. J. Photochem. Photobiol. A Chem. 2018, 356, 477–488. DOI: 10.1016/j.jphotochem.2018.01.017.
  • Jiang, S.; Chen, S.; Wang, Z.; Guo, H.; Yang, F. First Fluorescence Sensor for Simultaneously Detecting Three Kinds of IIB Elements (Zn2+, Cd2+ and Hg2+) Based on Aggregation-Induced Emission. Sensors Actuators, B Chem. 2020, 308, 127734. DOI: 10.1016/j.snb.2020.127734.
  • Yan, J.; Fan, L.; Qin, J.-C.; Li, C.-R.; Yang, Z.-Y. A Novel Chromone Schiff-Base Fluorescent Chemosensor for Cd(II) Based on C = N Isomerization. J. Fluoresc. 2016, 26, 1059–1065. DOI: 10.1007/s10895-016-1794-3.
  • Zhang, Z.; Lu, S.; Sha, C.; Xu, D. A Single Thiourea-Appended 1,8-Naphthalimide Chemosensor for Three Heavy Metal Ions: Fe3+, Pb2+, and Hg2+. Sensors Actuators. B Chem. 2015, 208, 258–266. DOI: 10.1016/j.snb.2014.10.136.
  • Rout, K.; Manna, A. K.; Sahu, M.; Mondal, J.; Singh, S. K.; Patra, G. K. Triazole-Based Novel Bis Schiff Base Colorimetric and Fluorescent Turn-on Dual Chemosensor for Cu 2+ and Pb 2+: Application to Living Cell Imaging and molecular logic gates. RSC Adv. 2019, 9, 25919-25931. DOI: 10.1039/C9RA03341F
  • Guang, Y. S.; Ren, X.; Zhao, S.; Yan, Q. Z.; Zhao, G.; Xu, Y. H. A Novel 4-Phenyl Amino Thiourea Derivative Designed for Real-Time Ratiometric–Colorimetric Detection of Toxic Pb2+. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2018, 53, 555–560. DOI: 10.1080/10934529.2018.1425022.
  • Xu, H.; Ding, H.; Fan, C.; Liu, G.; Pu, S. A Multi-Responsive Diarylethene-Rhodamine 6G Derivative for Sequential Detection of Cr3+ and CO32−. Tetrahedron 2018, 74, 3489–3497. DOI: 10.1016/j.tet.2018.02.032.
  • Liu, D.; Pang, T.; Ma, K.; Jiang, W.; Bao, X. A New Highly Sensitive and Selective Fluorescence Chemosensor for Cr3+ Based on Rhodamine B and a 4,13-Diaza-18-Crown 6-Ether Conjugate. RSC Adv. 2014, 4, 2563–2567. DOI: 10.1039/C3RA46237D.
  • Kaur, M.; Kaur, P.; Dhuna, V.; Singh, S.; Singh, K. A Ferrocene–Pyrene Based ‘Turn-On’ Chemodosimeter for Cr3+ – Application in Bioimaging, Dalt. Dalton Trans. 2014, 43, 5707–5712. DOI: 10.1039/c3dt53536c.
  • Kumawat, L. K.; Mergu, N.; Asif, M.; Gupta, V. K. Novel Synthesized Antipyrine Derivative Based “Naked Eye” Colorimetric Chemosensors for Al3+ and Cr3+. Sensors Actuators. B Chem. 2016, 231, 847–859. DOI: 10.1016/j.snb.2016.03.062.
  • Fan, L.; Qin, J. C.; Li, T. R.; Wang, B. D.; Yang, Z. Y. A Chromone Schiff-Base as Al(III) Selective Fluorescent and Colorimetric Chemosensor. J. Lumin. 2014, 155, 84–88. DOI: 10.1016/j.jlumin.2014.06.023.
  • Zhu, J.; Zhang, Y.; Wang, L.; Sun, T.; Wang, M.; Wang, Y.; Ma, D.; Yang, Q.; Tang, Y. A Simple Turn-on Schiff Base Fluorescence Sensor for Aluminum Ion. Tetrahedron Lett. 2016, 57, 3535–3539. DOI: 10.1016/j.tetlet.2016.06.112.
  • Şenkuytu, E.; Bingul, M.; Saglam, M. F.; Kandemir, H.; Sengul, I. F. Synthesis of a Novel N,N',N'-Tetraacetyl-4,6-Dimethoxyindole-Based Dual Chemosensor for the Recognition of Fe3+ and Cu2+ Ions. Inorg. Chim. Acta 2019, 495, 118947. DOI: 10.1016/j.ica.2019.05.046.
  • You, G. R.; Park, G. J.; Lee, S. A.; Ryu, K. Y.; Kim, C. Chelate-Type Schiff Base Acting as a Colorimetric Sensor for Iron in Aqueous Solution. Sensors Actuators, B Chem. 2015, 215, 188–195. DOI: 10.1016/j.snb.2015.03.064.
  • Li, B.; Tian, J.; Zhang, D.; Tian, F. A Novel Colorimetric Fluorescence Sensor for Fe 3+ Based on Quinoline Schiff Base. Luminescence 2017, 32, 1567–1573. DOI: 10.1002/bio.3361.
  • Park, S.; Lee, H.; Chae, J. B.; Kim, C. A Thiourea-Containing Fluorescent Chemosensor for Detecting Ga3+. J. Fluoresc. 2020, 30, 1457–1462. DOI: 10.1007/s10895-020-02624-w.
  • Lee, S. C.; Kim, C. A Thiourea-Naphthol Based Turn-on Fluorescent Sensor for Detecting In3+ and Its Application. Inorg. Chem. Commun. 2020, 112, 107752. DOI: 10.1016/j.inoche.2019.107752.
  • Cheng, J.; Yang, E.; Ding, P.; Tang, J.; Zhang, D.; Zhao, Y.; Ye, Y. Two Rhodamine Based Chemosensors for Sn4+ and the Application in Living Cells. Sensors Actuators B Chem. 2015, 221, 688–693. DOI: 10.1016/j.snb.2015.07.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.