754
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Effect of High-pressure CO2 Processing on Bacterial Spores

, , , , &
Pages 1808-1825 | Published online: 20 Jun 2016
 

Abstract

High-pressure CO2 (HPCD) is a nonthermal technology that can effectively inactivate the vegetative forms of pathogenic and spoilage bacteria, yeasts, and molds at pressures less than 30 MPa and temperatures in the range of 20°C to 40°C. However, HPCD alone at moderate temperatures (20–40°C) is often insufficient to obtain a substantial reduction in bacterial spore counts because their structures are more complex than those of vegetative cells. In this review, we first thoroughly summarized and discussed the inactivation effect of HPCD treatment on bacterial spores. We then presented and discussed the kinetics by which bacterial spores are inactivated by HPCD treatment. We also summarized hypotheses drawn by different researchers to explain the mechanisms of spore inactivation by HPCD treatment. We then summarized the current research status and future challenges of spore inactivation by HPCD treatment.

FUNDING

This research work is supported by Grant No. 31171770 of the National Natural Science Foundation of China and “Novel Technologies and Equipments of Food Nonthermal Processing” (Project No. 2011AA100801) of the 863 High-Tech Plan of China.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 440.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.