754
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Effect of High-pressure CO2 Processing on Bacterial Spores

, , , , &

REFERENCES

  • Abraham, G., Debray, E., Candau, Y. and Piar, G. (1990). Mathematical model of thermal destruction of Bacillus stearothermophilus spores. Appl. Environ. Microbiol. 56:3073–3080.
  • Andersson, A., Ronner, U. and Granum, P. E. (1995). What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? Int. J. Food Microbiol. 28:145–155.
  • Bae, Y. Y., Lee, H. J., Kim, S. A. and Rhee, M. S. (2009). Inactivation of Alicyclobacillus acidoterrestris spores in apple juice by supercritical carbon dioxide. Int. J. Food Microbiol. 136:95–100.
  • Ballestra, P. and Cuq, J. L. (1998). Influence of pressurized carbon dioxide on the thermal inactivation of bacterial and fungal spores. LWT-Food Sci. Technol. 31:84–88.
  • Beaman, T. C. and Gerhardt, P. (1986). Heat resistance of bacterial spores correlated with protoplast dehydration, mineralization, and thermal adaption. Appl. Environ. Microbiol. 52:1242–1246.
  • Black, E. P., Setlow, P., Hocking, A. D., Stewart, C. M., Kelly, A. L. and Hoover, D. G. (2007). Response of spores to high-pressure processing. Compreh. Rev. Food Sci. Food Safety. 6:103–119.
  • Block, S. S. (2001). Definition of terms. In: Disinfection, Sterilization, and Preservation, pp. 19–28. Block, S. S., Ed., Lea & Febiger Press, London, UK.
  • Brown, K. L. (2000). Control of bacterial spores. Br. Med. Bull. 56:158–171.
  • Calvo, L., Muguerza, B. and Cienfuegos-Jovellanos, E. (2007). Microbial inactivation and butter extraction in a cocoa derivative using high pressure CO2. J. Supercrit. Fluids. 42:80–87.
  • Calvo, L. and Torres, E. (2010). Microbial inactivation of paprika using high-pressure CO2. J. Supercrit. Fluids. 52:134–141.
  • Casas, J., Valverde, M. T., Marín-Iniesta, F. and Calvo, L. (2012). Inactivation of Alicyclobacillus acidoterrestris spores by high pressure CO2 in apple cream. Int. J. Food Microbiol. 156:18–24.
  • Checinska, A., Fruth, I. A., Green, T. L., Crawford, R. L. and Paszczynski, A. J. (2011). Sterilization of biological pathogens using supercritical fluid carbon dioxide containing water and hydrogen peroxide. J. Microbiol. Methods. 87:70–75.
  • Chirakkal, H., O'Rourke, M., Atrih, A., Foster, S. J. and Moir, A. (2002). Analysis of spore cortex lytic enzymes and related proteins in Bacillus subtilis endospore germination. Microbiology. 148:2383–2392.
  • Clouston, J. G. and Wills, P. A. (1969). Initiation of germination and inactivation of Bacillus pumilus spores by hydrostatic pressure. J. Bacteriol. 97:684–690.
  • Cortezzo, D. E., Koziol-Dube, K., Setlow, B. and Setlow, P. (2004). Treatment with oxidizing agents damages the inner membrane of spores of Bacillus subtilis and sensitizes the spores to subsequent stress. J. Appl. Microbiol. 97:838–852.
  • Cortezzo, D. E. and Setlow, P. (2005). Analysis of factors influencing the sensitivity of spores of Bacillus subtilis to DNA-damaging chemicals. J. Appl. Microbiol. 98:606–617.
  • Cowan, A., Koppel, D. E., Setlow, B. and Setlow, P. (2003). A soluble protein is immobile in dormant spores of Bacillus subtilis but is mobile in germinated spores: implications for spore dormancy. PNAS. 100:4209–4214.
  • Cowan, A. E., Olivastro, E. M., Koppel, D. E., Loshon, C. A., Setlow, B. and Setlow, P. (2004). Lipids in the inner membrane of dormant spores of Bacillus species are immobile. Proc. Natl. Acad. Sci. USA 101:7733–7738.
  • Damar, S. and Balaban, M. O. (2006). Review of dense phase CO2 technology: Microbial and enzyme inactivation, and effects on food quality. J. Food Sci. 71:1–11.
  • Dasgupta, A. P. and Hull, R. R. (1989). Late blowing of Swiss cheese: Incidence of Clostridium tyrobutyricum in manufacturing milk. Aust. J. Dairy Technol. 44:82–87.
  • Devlieghere, F., Vermeiren, L. and Debevere, J. (2004). New preservation technologies: Possibilities and limitations. Int. Dairy J. 14:273–285.
  • Driks, A. (1999). Bacillus subtilis spore coat. Microbiol. Mol. Biol. Rev. 63:1–20.
  • Enomoto, A., Nakamura, K., Hakoda, M. and Amaya, N. (1997). Lethal effect of high-pressure carbon dioxide on a bacterial spore. J. Ferm. Bioeng. 83:305–307.
  • Estrada-Girón, Y., Swanson, B. G. and Barbosa-Cánovas, G. V. (2005). Advances in the use of high hydrostatic pressure for processing cereal grains and legumes. Trends Food Sci. Technol. 16:194–203.
  • Evans, F. R. and Curran, H. R. (1943). The accelerating effect of sublethal heat on spore germination in mesophilic aerobic bacteria. J. Bacteriol. 46:513–523.
  • FDA. (1997). ORDB 510(K) Sterility Review Guidance. http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm080211.htm. Ref. Type: Online Source.
  • Foster, S. J. and Johnstone, K. (1990). Pulling the trigger: The mechanism of bacterial spore germination. Mol. Microbiol. 4:137–141.
  • Fraser, D. (1951). Bursting bacteria by release of gas pressure. Nature. 167:33–34.
  • Furukawa, S., Watanabe, T., Koyama, T., Hirata, J., Narisawa, N., Ogihara, H. and Yamasaki, M. (2006). Effect of high pressure carbon dioxide on the clumping of the bacterial spores. Int. J. Food Microbiol. 106:95–98.
  • Furukawa, S., Watanabe, T., Koyama, T., Hirata, J., Narisawa, N., Ogihara, H. and Yamasaki, M. (2009). Inactivation of food poisoning bacteria and Geobacillus stearothermophilus spores by high pressure carbon dioxide treatment. Food Contr. 20:53–58.
  • Furukawa, S., Watanabe, T., Tai, T., Hirata, J., Narisawa, N., Kawarai, T., Ogihara, H. and Yamasaki, M. (2004). Effect of high pressure gaseous carbon dioxide on the germination of bacterial spores. Int. J. Food Microbiol. 91:209–213.
  • Furukawa, S., Watanabe, T., Tai, T., Hirata, J., Ogihara, H. and Yamasaki, M. (2003). Effect of high pressure gaseous and supercritical carbon dioxide treatments on bacterial spores. Biocontr. Sci. 8:97–100.
  • Garcia-Gonzalez, L., Geeraerd, A. H., Elst, K., Van Ginneken, L., Van Impe, J. F. and Devlieghere, F. (2009). Influence of type of microorganism, food ingredients and food properties on high-pressure carbon dioxide inactivation of microorganisms. Int. J. Food Microbiol. 129:253–263.
  • Garcia-Gonzalez, L., Geeraerd, A. H., Spilimbergo, S., Elst, K., Van Ginneken, L., Debevere, J., Van Impe, J. F. and Devlieghere, F. (2007). High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and the future. Int. J. Food Microbiol. 117:1–28.
  • Gould, G. W. (1969). Germination. In: The Bacterial Spore, pp. 397–444. Gould, G. W. and Hurst A., Eds., Academic Press, London, UK.
  • Gould, G. W. and Sale, J. H. (1970). Initiation of germination of bacterial spores by hydrostatic pressure. J. General Microbiol. 60:335–346.
  • Haas, G. J., Prescott, H. E., Dudley, E., Dick, R., Hintlia, C. and Keane, L. (1989). Inactivation of microorganisms by carbon dioxide under pressure. J. Food Safety. 9:253–265.
  • Hata, C., Kumagai, H. and Nakamura, K. (1996). Rate analysis of the sterilization of microbial cells in high pressure carbon dioxide. Food Sci. Technol. Int. 2:229–233.
  • Hemmer, J. D., Drews, M. J., LaBerge, M. and Matthews, M. A. (2007). Sterilization of bacterial spores by using supercritical carbon dioxide and hydrogen peroxide. J. Biomed. Mater. Res. Part B: Appl. Biomater. 80B:511–518.
  • Ishikawa, H., Shimoda, M., Tamaya, K., Yonekura, A. and Kawano, I. (1997). Inactivation of Bacillus spores by the supercritical carbon dioxide micro-bubble method. Biosci. Biotechnol. Bioch. 61:1022–1023.
  • Jones, C. A., Padula, N. L. and Setlow, P. (2005). Effect of mechanical abrasion on the viability, disruption and germination of spores of Bacillus subtilis. J. Appl. Microbiol. 99:1484–1494.
  • Kamihira, M., Taniguchi, M. and Kobayashi, T. (1987). Sterilization of microorganisms with supercritical carbon dioxide. Agric. Biol. Chem. 51:407–412.
  • Karajanagi, S. S., Yoganathan, R., Mammucari, R., Park, H., Cox, J., Zeitels, S. M., Langer, R. and Foster, N.R. (2011). Application of a dense gas technique for sterilizing soft biomaterials. Biotechnol. Bioeng. 108:1716–1725.
  • Keynan, A. and Evenchik, Z. (1969). Activation. In: The Bacterial Spore, pp. 359–396. Gould, G. W. and Hurst, A., Eds., Academic Press, London, UK.
  • Keynan, A., Evenchik, Z., Halvorson, H. O. and Hastings, J. W. (1964). Activation of bacterial endospores. J. Bacteriol. 88:313–318.
  • Killeen, S. and McCourt, M. (2012). Decontamination and sterilization. Surgery (Oxford). 30:687–692.
  • Kumugai, H., Hata, C. and Nakamura, K. (1997). CO2 sorption by microbial cells and sterilization by high-pressure CO2. Biosci., Biotechnol. Biochem. 61:931–935.
  • Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Alloni, G., Azevedo, V., Bertero, M.G., Bessieres, P., Bolotin, A., Borchert, S., Borriss, R., Boursier, L., Brans, A., Braun, M., Brignell, S. C., Bron, S., Brouillet, S., Bruschi, C. V., Caldwell, B., Capuano, V., Carter, N. M., Choi, S. K., Cordani, J. J., Connerton, I. F., Cummings, N. J., Daniel, R. A., Denziot, F., Devine, K. M., Düsterhöft, A., Ehrlich, S. D., Emmerson, P. T., Entian, K. D., Errington, J., Fabret, C., Ferrari, E., Foulger, D., Fritz, C., Fujita, M., Fujita, Y., Fuma, S., Galizzi, A., Galleron, N., Ghim, S. Y., Glaser, P., Goffeau, A., Golightly, E. J., Grandi, G., Guiseppi, G., Guy, B. J., Haga, K., Haiech, J., Harwood, C. R., Hènaut, A., Hilbert, H., Holsappel, S., Hosono, S., Hullo, M. F., Itaya, M., Jones, L., Joris, B., Karamata, D., Kasahara, Y., Klaerr-Blanchard, M., Klein, C., Kobayashi, Y., Koetter, P., Koningstein, G., Krogh, S., Kumano, M., Kurita, K., Lapidus, A., Lardinois, S., Lauber, J., Lazarevic, V., Lee, S. M., Levine, A., Liu, H., Masuda, S., Mauël, C., Médigue, C., Medina, N., Mellado, R. P., Mizuno, M., Moestl, D., Nakai, S., Noback, M., Noone, D., O'Reilly, M., Ogawa, K., Ogiwara, A., Oudega, B., Park, S. H., Parro, V., Pohl, T. M., Portelle, D., Porwollik, S., Prescott, A. M., Presecan, E., Pujic, P., Purnelle, B., Rapoport, G., Rey, M., Reynolds, S., Rieger, M., Rivolta, C., Rocha, E., Roche, B., Rose, M., Sadaie, Y., Sato, T., Scanlan, E., Schleich, S., Schroeter, R., Scoffone, F., Sekiguchi, J., Sekowska, A., Seror, S. J., Serror, P., Shin, B. S., Soldo, B., Sorokin, A., Tacconi, E., Takagi, T., Takahashi, H., Takemaru, K., Takeuchi, M., Tamakoshi, A., Tanaka, T., Terpstra, P., Togoni, A., Tosato, V., Uchiyama, S., Vandebol, M., Vannier, F., Vassarotti, A., Viari, A., Wambutt, R., Wedler, H., Weitzenegger, T., Winters, P., Wipat, A., Yamamoto, H., Yamane, K., Yasumoto, K., Yata, K., Yoshida, K., Yoshikawa, H. F., Zumstein, E., Yoshikawa, H. and Danchin, A. (1997). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256.
  • Leggett, M. J., McDonnell, G., Denyer, S. P., Setlow, P. and Maillard, J. Y. (2012). Bacterial spore structures and their protective role in biocide resistance. J. Appl. Microbiol. 113:485–498.
  • Logan, N. A. (2011). Bacillus and relatives in foodborne illness. J. Appl. Microbiol. 112:417–429.
  • Lund, B. M. (1990). Foodborne disease due to Bacillus and Clostridium species. Lancet. 336:982–986.
  • Madigan, M. T., Martinko, J. M. and Parker, J. (2002). Brock Biology of Microorganisms. Prentice Hall, USA.
  • Makino, S. and Moriyama, R. (2002). Hydrolysis of cortex peptidoglycan during bacterial spore germination. Med. Sci. Monit. 8:119–127.
  • Moir, A. (2006). How do spores germinate. J. Appl. Microbiol. 101:526–530.
  • Moir, A., Corfe, B. M. and Behravan, J. (2002). Spore germination. Cellul. Mol. Life Sci. 59:403–409.
  • Murrell, W. G. (1961). Spore formation and germination as microbial reaction to the environment. Symp. Soc. Gen. Microbiol. 11:100–150.
  • Nessi, C., Jedrzejas, M. J. and Setlow, P. (1998). Structure and mechanism of action of the protease that degrades small acid soluble spore proteins during germination of spores of Bacillus species. J. Bacteriol. 180:5077–5084.
  • Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J. and Setlow, P. (2000). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64:548–572.
  • Ogihara, H., Hitomi, T. and Yano, N. (1998). Inactivation of some foodborne pathogens and indicator bacteria by hydrostatic pressure. J. Food Hygienic Soci. Jpn. 39:436–439.
  • Okazaki, T., Yoneda, T. and Suzuki, K. (1994). Combined effects of temperature and pressure on sterilization of Bacillus subtilis spores. J. Jpn. Soci. Food Sci.Technol. 41:536–541.
  • Paidhungat, M., Ragkousi, R. and Setlow, P. (2001). Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca2+-dipicolinate. J. Bacteriol. 183:4886–4893.
  • Paidhungat, M. and Setlow, P. (2000). Role of Ger proteins in nutrient and non-nutrient triggering of spore germination in Bacillus subtilis. J. Bacteriol. 182:2513–2519.
  • Paidhungat, M. and Setlow. P. (2002). Spore germination and outgrowth. In: Bacillus subtilis and its Relatives: From Genes to Cells, pp. 537–548. Hoch, J. A., Losick, R. and Sonenshein, A. L., Eds., American Society for Microbiology Press, Washington, DC.
  • Paidhungat, M., Setlow, B., Daniels, W. B., Hoover, D. G., Papafragkou, E. and Setlow, P. (2002). Mechanisms of induction of germination of spores of Bacillus subtilis by high pressure. Appl. Environ. Microbiol. 68:3172–3175.
  • Perrut, M. (2012). Sterilization and virus inactivation by supercritical fluids (a review). J. Supercrit. Fluids. 66:359–371.
  • Qiu, Q-Q., Leamy, P., Brittingham, J., Pomerleau, J., Kabaria, N. and Connor, J. (2009). Inactivation of bacterial spores and viruses in biological material using supercritical carbon dioxide with sterilant. J. Biomed. Mater. Res. Part B: Appl. Biomater. 91:572–578.
  • Roberts. T. A. and Derrick. C. M. (1975). Sporulation of Clostridium putrefaciens and the resistance of the spores to heat, γ -radiation and curing salts. J. Appl. Bacteriol. 38:33–37.
  • Russell, A. D. (2001). Principles of antimicrobial activity In: Disinfection, Sterilization, and Preservation, pp. 31–55. Block, S. S., Ed., Lea & Febiger Press, London, UK.
  • Sapru, V., Teixeira, A. A., Smerage, G. H. and Lindsay. (1992). Predicting thermophilic spore population dynamics for UHT sterilization processes. J. Sci. 57:1248–1257.
  • Setlow, P. (2003). Spore germination. Curr. Opin. Microbiol. 6:550–556.
  • Setlow, P. (2006). Spores of Bacillus subtilis: Their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol. 101:514–525.
  • Setlow, B., Cowan, A. E. and Setlow, P. (2003). Germination of spores of Bacillus subtilis with dodecylamine. J. Appl. Microbiol. 95:637–648.
  • Setlow, B., Melly, E. and Setlow, P. (2001). Properties of spores of Bacillus subtilis blocked at an intermediate stage of spore germination. J. Bacteriol. 183:4894–4899.
  • Shah, I. M., Laaberki, M. H., Popham, D. L. and Dworkin, J. (2008). A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell. 135:486–496.
  • Shieh, E., Paszczynski, A., Wai, C. M., Lang, Q. and Crawford, R. L. (2009). Sterilization of Bacillus pumilus spores using supercritical carbon dioxide containing various modifier solutions. J. Microbiol. Methods. 76:247–252.
  • Slieman, T. A. and Nicholson, W. L. (2001). Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation. Appl. Environ. Microbiol. 67:1274–1279.
  • Sonenshein, A. L., Hoch, J. A. and Losick, R. (2002). Bacillus subtilis and Its Closest Relatives from Genes to Cells. ASM Press, Washington, DC.
  • Spilimbergo, S. and Bertucco, A. (2003). Non-Thermal bacteria inactivation with dense CO2. Biotechnol. Bioeng. 84:627–638.
  • Spilimbergo, S., Bertucco, A., Lauro, F. M. and Bertoloni, G. (2003a). Inactivation of Bacillus subtilis spores by supercritical CO2 treatment. Innov. Food Sci. Emerg. Technol. 4:161–165.
  • Spilimbergo, S., Dehghani, F., Bertucco, A., and Foster, N. R. (2003b). Inactivation of bacteria and spores by pulse electric field and high pressure CO2 at low temperature. Biotechnol. Bioeng. 82:118–125.
  • Spilimbergo, S., Elvassore, N. and Bertucco, A. (2002). Microbial inactivation by high pressure. J. Supercrit. Fluids. 22:55–63.
  • Spilimbergo, S., Matthews, M. A. and Cinquemani, C. (2010). Supercritical fluid pasteurization and food safety. In: Alternatives to Conventional Food Processing, pp. 145–174. Proctor A., Ed., Royal Society of Chemistry, Green Chemistry Series.
  • Splittstoesser, D. F., Churey, J. J. and Lee, C. Y. (1994). Growth characteristics of aciduric sporeforming bacilli isolated from fruit juices. J. Food. Prot. 57:1080–1083.
  • Tarafa, P. J., Jimenez, A., Zhang, J. and Matthews, M. A. (2009). Compressed carbon dioxide (CO2) for decontamination of biomaterials and tissue scaffolds. In: Proceedings 9th International Symposium Supercritical Fluids, p. C86. Cansell, F., Mercadier, J. and Fages J., Eds. Arcachon, France, May 18–20, 2009.
  • Watanabe, T., Furukawa, S., Hiratak, J., Koyama, T., Ogihara, H. and Yamasaki, M. (2003b). Inactivation of Geobacillus stearothermophilus spores by high-pressure carbon dioxide treatment. Appl. Environ. Microbiol. 69: 7124–7129.
  • Watanabe, T., Furukawa, S. and Tai, T. (2003a). High pressure carbon dioxide decreases the heat tolerance of the bacterial spores. Food Sci. Technol. Res. 9:342–344.
  • Westhoff, D. C. and Dougherty, S. L. (1981). Characterization of Bacillus species isolated from spoiled ultrahigh temperature processed milk. J. Dairy Sci. 64:572–580.
  • Westphal, A. J., Price, P. B., Leighton, T. J. and Wheeler, K. E. (2003). Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity. Proc. Natl. Acad. Sci. USA 100:3461–3466.
  • White, A., Burns, D. and Christensen, T. W. (2006). Effective terminal sterilization using supercritical carbon dioxide. J. Biotechnol. 123:504–515.
  • Wilson, D. R., Dabrowski, L., Stringer, S., Moezelaar, R. and Brocklehurst, T. F. (2008). High pressure in combination with elevated temperature as a method for the sterilization of food. Trend Food Sci. Technol. 19:289–299.
  • Wuytack, E. Y., Soons, J., Poschet, F. and Michiels, C. W. (2000). Comparative study of pressure- and nutrient-induced germination of Bacillus subtilis spores. Appl. Environ. Microbiol. 66:257–261.
  • Zhang, J., Burrows, S., Matthews, M. A., Drews, M. J., Laberge, M. and An, Y. N. (2006a). Sterilizing Bacillus pumilus spores using supercritical carbon dioxide. J. Microbiol. Methods. 66:479–485.
  • Zhang, J., Dalal, N., Gleason, C., Matthews, M. A., Waller, L. N., Fox, K. F., Fox, A., Drews, M. J., Laberge, M. and An, Y. N. (2006b). On the mechanism of deactivation of Bacillus atrophaeus spores using supercritical carbon dioxide. J. Supercrit. Fluids. 38:268–273.
  • Zhang, J., Dalal, N., Matthews, M. A., Waller, L. N., Saunders, C., Fox, K. F. and Fox, A. (2007). Supercritical carbon dioxide and hydrogen peroxide cause mild changes in spore structures associated with high killing rate of Bacillus anthracis, J. Microbiol. Methods. 70:442–451.
  • Zhang, J., Davis, T. A., Matthews, M. A., Drews, M. J., LaBerge, M. and An, Y. H. (2006c). Sterilization using high-pressure carbon dioxide. J. Supercrit. Fluids. 38:354–372.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.