435
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Toxic reactive oxygen species stresses for reconfiguring central carbon metabolic fluxes in foodborne bacteria: Sources, mechanisms and pathways

, , & ORCID Icon
Pages 1806-1821 | Published online: 23 Jan 2023
 

Abstract

The toxic reactive oxygen species (toxROS) is the reactive oxygen species (ROS) beyond the normal concentration of cells, which has inactivation and disinfection effects on foodborne bacteria. However, foodborne bacteria can adapt and survive by physicochemical regulation of antioxidant systems, especially through central carbon metabolism (CCM), which is a significant concern for food safety. It is thus necessary to study the antioxidant regulation mechanisms of CCM in foodborne bacteria under toxROS stresses. Therefore, the purpose of this review is to provide an update and comprehensive overview of the reconfiguration of CCM fluxes in foodborne bacteria that respond to different toxROS stresses. In this review, two key types of toxROS including exogenous toxROS (exo-toxROS) and endogenous toxROS (endo-toxROS) are introduced. Exo-toxROS are produced by disinfectants, such as H2O2 and HOCl, or during food non-thermal processing such as ultraviolet (UV/UVA), cold plasma (CP), ozone (O3), electrolyzed water (EW), pulsed electric field (PEF), pulsed light (PL), and electron beam (EB) processing. Endo-toxROS are generated by bioreagents such as antibiotics (aminoglycosides, quinolones, and β-lactams). Three main pathways for CCM in foodborne bacteria under the toxROS stress are also highlighted, which are glycolysis (EMP), pentose phosphate pathway (PPP), and tricarboxylic acid cycle (TCA). In addition, energy metabolisms throughout these pathways are discussed. Finally, challenges and future work in this area are suggested. It is hoped that this review should be beneficial in providing insights for future research on bacterial antioxidant CCM defence under both exo-toxROS stresses and endo-toxROS stresses.

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (32272466) for its support. This research was also supported by the Guangdong Basic and Applied Basic Research Foundation (2021A1515110396, 2021A1515010644), Guangzhou Basic and Applied Basic Research Foundation (202201010008), the Contemporary International Collaborative Research Centre of Guangdong Province on Food Innovative Processing and Intelligent Control (2019A050519001), the Science and Technology Plan Projects of Guangzhou City (202102100009) and the Common Technical Innovation Team of Guangdong Province on Preservation and Logistics of Agricultural Products (2022KJ145).

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 440.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.