589
Views
1
CrossRef citations to date
0
Altmetric
Review

Biological and thermodynamic stabilization of lipid-based delivery systems through natural biopolymers; controlled release and molecular dynamics simulations

, ORCID Icon, ORCID Icon, , ORCID Icon, & ORCID Icon show all
Published online: 23 Mar 2023
 

Abstract

Nowadays, the use of lipid-based nanocarriers for the targeted and controlled delivery of a variety of hydrophobic and hydrophilic bioactive-compounds and drugs has increased significantly. However, challenges such as thermodynamic instability, oxidation, and degradation of lipid membranes, as well as the unintended release of loaded compounds, have limited the use of these systems in the food and pharmaceutical industries. Therefore, the present study reviews the latest achievements in evaluating the characteristics, production methods, challenges, functional, and biological stabilization strategies of lipid-based carriers (including changes in formulation composition, structural modification, membrane-rigidity, and finally monolayer or multilayer coating with biopolymers) in different conditions, as well as molecular dynamics simulations. The scientists’ findings indicate the effect of natural biopolymers (such as chitosan, calcium alginate, pectin, dextran, xanthan, caseins, gelatin, whey-proteins, zein, and etc.) in modifying the external structure of lipid-based carriers, improving thermodynamic stability and resistance of membranes to physicochemical and mechanical tensions. However, depending on the type of bioactive compound as well as the design and production goals of the delivery-system, selecting the appropriate biopolymer has a significant impact on the stability of vesicles and maintaining the bioaccessibility of the loaded-compounds due to the stresses caused by the storage-conditions, formulation, processing and gastrointestinal tract.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 440.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.