0
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Advances in metabolism pathways of theaflavins: digestion, absorption, distribution and degradation

, , , , , , & show all
Published online: 02 Aug 2024
 

Abstract

Theaflavins, a major kind of component in black tea, have been reported to show a variety of biological activities and health effects. However, the unstable chemical properties, low bioavailability and unclear metabolism pathways of theaflavins have left much to be desired in terms of its specific efficacy and applications. This paper provides a comprehensive knowledge on the digestion, absorption, metabolism, distribution and excretion of theaflavins. We find that pH-dependent stability, efflux transport proteins are closely related to the low absorption rate and low bioavailability of theaflavins. When pass through the gastrointestinal tract, TFDG, TF2A and TF2B are gradually degraded to TF1, and release gallic acid. Then, the theaflavins skeleton are degraded into small molecular phenolic substances under the action of enzymes and microorganisms. In addition, theaflavins are widely distributed in the human body including brain, lung, heart, kidney, liver, blood tissue in a low content and can be excreted through feces. However, the influence of digestive enzymes barrier and gut microbial barrier on theaflavins are still unclear. Importantly, most findings are reported by in vitro methods and animal experiments, the metabolites and metabolic pathways of theaflavins in human body are not fully understood and need to be further investigated. We hope to lay a theoretical basis for exploring methods to improve the bioavailability of theaflavins and expanding the application of theaflavins in health foods as well as pharmaceuticals.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was funded by the National Key Research and Development Program of China [No. 2022YFE0111200], National Natural Science Foundation of China [No. 32001680], the Scientific Research Foundation of Hunan Provincial Education Department [No. 23A0187] and the Graduate Innovation Project by Postgraduate Innovation Project of Hunan Provence [No. CX20230721].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 440.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.