1,517
Views
91
CrossRef citations to date
0
Altmetric
Reviews

Rice and Butterfly Wing Effect Inspired Low Drag and Antifouling Surfaces: A Review

&
Pages 1-37 | Published online: 12 Aug 2014
 

Abstract

In this article, a comprehensive overview of the reported rice and butterfly wing effect discovered by the authors is presented with the hope to attract and inspire others in the field. Living nature has inspired researchers for centuries to solve complex engineering challenges with much attention given to unique structures, materials, and surfaces. Such challenges include drag reducing and antifouling surfaces to save energy, lives, and money. Many flora and fauna exhibit low drag and antifouling characteristics, such as shark skin and lotus leaves, due to their hierarchical microstructured morphologies. The authors have reported that rice leaves and butterfly wings combine the shark skin (anisotropic flow leading to low drag) and lotus leaf (superhydrophobic and self-cleaning) effects, producing the so-called rice and butterfly wing effect. Such surfaces have been fabricated with photolithography, soft lithography, hot embossing, and coating techniques. Fluid drag, anti-biofouling, anti-inorganic fouling, contact angle, and contact angle hysteresis results are presented to understand the role of sample morphology. Conceptual modeling provides design guidance when developing novel low drag and antifouling surfaces for medical, marine, and industrial applications.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 526.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.